Annotation of rpl/lapack/lapack/dlasd1.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
        !             2:      $                   IDXQ, IWORK, WORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
        !            11:       DOUBLE PRECISION   ALPHA, BETA
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IDXQ( * ), IWORK( * )
        !            15:       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
        !            22: *  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
        !            23: *
        !            24: *  A related subroutine DLASD7 handles the case in which the singular
        !            25: *  values (and the singular vectors in factored form) are desired.
        !            26: *
        !            27: *  DLASD1 computes the SVD as follows:
        !            28: *
        !            29: *                ( D1(in)  0    0     0 )
        !            30: *    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)
        !            31: *                (   0     0   D2(in) 0 )
        !            32: *
        !            33: *      = U(out) * ( D(out) 0) * VT(out)
        !            34: *
        !            35: *  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
        !            36: *  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
        !            37: *  elsewhere; and the entry b is empty if SQRE = 0.
        !            38: *
        !            39: *  The left singular vectors of the original matrix are stored in U, and
        !            40: *  the transpose of the right singular vectors are stored in VT, and the
        !            41: *  singular values are in D.  The algorithm consists of three stages:
        !            42: *
        !            43: *     The first stage consists of deflating the size of the problem
        !            44: *     when there are multiple singular values or when there are zeros in
        !            45: *     the Z vector.  For each such occurence the dimension of the
        !            46: *     secular equation problem is reduced by one.  This stage is
        !            47: *     performed by the routine DLASD2.
        !            48: *
        !            49: *     The second stage consists of calculating the updated
        !            50: *     singular values. This is done by finding the square roots of the
        !            51: *     roots of the secular equation via the routine DLASD4 (as called
        !            52: *     by DLASD3). This routine also calculates the singular vectors of
        !            53: *     the current problem.
        !            54: *
        !            55: *     The final stage consists of computing the updated singular vectors
        !            56: *     directly using the updated singular values.  The singular vectors
        !            57: *     for the current problem are multiplied with the singular vectors
        !            58: *     from the overall problem.
        !            59: *
        !            60: *  Arguments
        !            61: *  =========
        !            62: *
        !            63: *  NL     (input) INTEGER
        !            64: *         The row dimension of the upper block.  NL >= 1.
        !            65: *
        !            66: *  NR     (input) INTEGER
        !            67: *         The row dimension of the lower block.  NR >= 1.
        !            68: *
        !            69: *  SQRE   (input) INTEGER
        !            70: *         = 0: the lower block is an NR-by-NR square matrix.
        !            71: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            72: *
        !            73: *         The bidiagonal matrix has row dimension N = NL + NR + 1,
        !            74: *         and column dimension M = N + SQRE.
        !            75: *
        !            76: *  D      (input/output) DOUBLE PRECISION array,
        !            77: *                        dimension (N = NL+NR+1).
        !            78: *         On entry D(1:NL,1:NL) contains the singular values of the
        !            79: *         upper block; and D(NL+2:N) contains the singular values of
        !            80: *         the lower block. On exit D(1:N) contains the singular values
        !            81: *         of the modified matrix.
        !            82: *
        !            83: *  ALPHA  (input/output) DOUBLE PRECISION
        !            84: *         Contains the diagonal element associated with the added row.
        !            85: *
        !            86: *  BETA   (input/output) DOUBLE PRECISION
        !            87: *         Contains the off-diagonal element associated with the added
        !            88: *         row.
        !            89: *
        !            90: *  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)
        !            91: *         On entry U(1:NL, 1:NL) contains the left singular vectors of
        !            92: *         the upper block; U(NL+2:N, NL+2:N) contains the left singular
        !            93: *         vectors of the lower block. On exit U contains the left
        !            94: *         singular vectors of the bidiagonal matrix.
        !            95: *
        !            96: *  LDU    (input) INTEGER
        !            97: *         The leading dimension of the array U.  LDU >= max( 1, N ).
        !            98: *
        !            99: *  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
        !           100: *         where M = N + SQRE.
        !           101: *         On entry VT(1:NL+1, 1:NL+1)' contains the right singular
        !           102: *         vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
        !           103: *         the right singular vectors of the lower block. On exit
        !           104: *         VT' contains the right singular vectors of the
        !           105: *         bidiagonal matrix.
        !           106: *
        !           107: *  LDVT   (input) INTEGER
        !           108: *         The leading dimension of the array VT.  LDVT >= max( 1, M ).
        !           109: *
        !           110: *  IDXQ  (output) INTEGER array, dimension(N)
        !           111: *         This contains the permutation which will reintegrate the
        !           112: *         subproblem just solved back into sorted order, i.e.
        !           113: *         D( IDXQ( I = 1, N ) ) will be in ascending order.
        !           114: *
        !           115: *  IWORK  (workspace) INTEGER array, dimension( 4 * N )
        !           116: *
        !           117: *  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
        !           118: *
        !           119: *  INFO   (output) INTEGER
        !           120: *          = 0:  successful exit.
        !           121: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           122: *          > 0:  if INFO = 1, an singular value did not converge
        !           123: *
        !           124: *  Further Details
        !           125: *  ===============
        !           126: *
        !           127: *  Based on contributions by
        !           128: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           129: *     California at Berkeley, USA
        !           130: *
        !           131: *  =====================================================================
        !           132: *
        !           133: *     .. Parameters ..
        !           134: *
        !           135:       DOUBLE PRECISION   ONE, ZERO
        !           136:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           137: *     ..
        !           138: *     .. Local Scalars ..
        !           139:       INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
        !           140:      $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
        !           141:       DOUBLE PRECISION   ORGNRM
        !           142: *     ..
        !           143: *     .. External Subroutines ..
        !           144:       EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
        !           145: *     ..
        !           146: *     .. Intrinsic Functions ..
        !           147:       INTRINSIC          ABS, MAX
        !           148: *     ..
        !           149: *     .. Executable Statements ..
        !           150: *
        !           151: *     Test the input parameters.
        !           152: *
        !           153:       INFO = 0
        !           154: *
        !           155:       IF( NL.LT.1 ) THEN
        !           156:          INFO = -1
        !           157:       ELSE IF( NR.LT.1 ) THEN
        !           158:          INFO = -2
        !           159:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           160:          INFO = -3
        !           161:       END IF
        !           162:       IF( INFO.NE.0 ) THEN
        !           163:          CALL XERBLA( 'DLASD1', -INFO )
        !           164:          RETURN
        !           165:       END IF
        !           166: *
        !           167:       N = NL + NR + 1
        !           168:       M = N + SQRE
        !           169: *
        !           170: *     The following values are for bookkeeping purposes only.  They are
        !           171: *     integer pointers which indicate the portion of the workspace
        !           172: *     used by a particular array in DLASD2 and DLASD3.
        !           173: *
        !           174:       LDU2 = N
        !           175:       LDVT2 = M
        !           176: *
        !           177:       IZ = 1
        !           178:       ISIGMA = IZ + M
        !           179:       IU2 = ISIGMA + N
        !           180:       IVT2 = IU2 + LDU2*N
        !           181:       IQ = IVT2 + LDVT2*M
        !           182: *
        !           183:       IDX = 1
        !           184:       IDXC = IDX + N
        !           185:       COLTYP = IDXC + N
        !           186:       IDXP = COLTYP + N
        !           187: *
        !           188: *     Scale.
        !           189: *
        !           190:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
        !           191:       D( NL+1 ) = ZERO
        !           192:       DO 10 I = 1, N
        !           193:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
        !           194:             ORGNRM = ABS( D( I ) )
        !           195:          END IF
        !           196:    10 CONTINUE
        !           197:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
        !           198:       ALPHA = ALPHA / ORGNRM
        !           199:       BETA = BETA / ORGNRM
        !           200: *
        !           201: *     Deflate singular values.
        !           202: *
        !           203:       CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
        !           204:      $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
        !           205:      $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
        !           206:      $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
        !           207: *
        !           208: *     Solve Secular Equation and update singular vectors.
        !           209: *
        !           210:       LDQ = K
        !           211:       CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
        !           212:      $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
        !           213:      $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
        !           214:      $             INFO )
        !           215:       IF( INFO.NE.0 ) THEN
        !           216:          RETURN
        !           217:       END IF
        !           218: *
        !           219: *     Unscale.
        !           220: *
        !           221:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
        !           222: *
        !           223: *     Prepare the IDXQ sorting permutation.
        !           224: *
        !           225:       N1 = K
        !           226:       N2 = N - K
        !           227:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
        !           228: *
        !           229:       RETURN
        !           230: *
        !           231: *     End of DLASD1
        !           232: *
        !           233:       END

CVSweb interface <joel.bertrand@systella.fr>