Annotation of rpl/lapack/lapack/dlasd0.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
                      2:      $                   WORK, INFO )
                      3: *
1.5       bertrand    4: *  -- LAPACK auxiliary routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    7: *     June 2010
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IWORK( * )
                     14:       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
                     15:      $                   WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  Using a divide and conquer approach, DLASD0 computes the singular
                     22: *  value decomposition (SVD) of a real upper bidiagonal N-by-M
                     23: *  matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
                     24: *  The algorithm computes orthogonal matrices U and VT such that
                     25: *  B = U * S * VT. The singular values S are overwritten on D.
                     26: *
                     27: *  A related subroutine, DLASDA, computes only the singular values,
                     28: *  and optionally, the singular vectors in compact form.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  N      (input) INTEGER
                     34: *         On entry, the row dimension of the upper bidiagonal matrix.
                     35: *         This is also the dimension of the main diagonal array D.
                     36: *
                     37: *  SQRE   (input) INTEGER
                     38: *         Specifies the column dimension of the bidiagonal matrix.
                     39: *         = 0: The bidiagonal matrix has column dimension M = N;
                     40: *         = 1: The bidiagonal matrix has column dimension M = N+1;
                     41: *
                     42: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
                     43: *         On entry D contains the main diagonal of the bidiagonal
                     44: *         matrix.
                     45: *         On exit D, if INFO = 0, contains its singular values.
                     46: *
                     47: *  E      (input) DOUBLE PRECISION array, dimension (M-1)
                     48: *         Contains the subdiagonal entries of the bidiagonal matrix.
                     49: *         On exit, E has been destroyed.
                     50: *
                     51: *  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
                     52: *         On exit, U contains the left singular vectors.
                     53: *
                     54: *  LDU    (input) INTEGER
                     55: *         On entry, leading dimension of U.
                     56: *
                     57: *  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
                     58: *         On exit, VT' contains the right singular vectors.
                     59: *
                     60: *  LDVT   (input) INTEGER
                     61: *         On entry, leading dimension of VT.
                     62: *
                     63: *  SMLSIZ (input) INTEGER
                     64: *         On entry, maximum size of the subproblems at the
                     65: *         bottom of the computation tree.
                     66: *
                     67: *  IWORK  (workspace) INTEGER work array.
                     68: *         Dimension must be at least (8 * N)
                     69: *
                     70: *  WORK   (workspace) DOUBLE PRECISION work array.
                     71: *         Dimension must be at least (3 * M**2 + 2 * M)
                     72: *
                     73: *  INFO   (output) INTEGER
                     74: *          = 0:  successful exit.
                     75: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
1.5       bertrand   76: *          > 0:  if INFO = 1, a singular value did not converge
1.1       bertrand   77: *
                     78: *  Further Details
                     79: *  ===============
                     80: *
                     81: *  Based on contributions by
                     82: *     Ming Gu and Huan Ren, Computer Science Division, University of
                     83: *     California at Berkeley, USA
                     84: *
                     85: *  =====================================================================
                     86: *
                     87: *     .. Local Scalars ..
                     88:       INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
                     89:      $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
                     90:      $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
                     91:       DOUBLE PRECISION   ALPHA, BETA
                     92: *     ..
                     93: *     .. External Subroutines ..
                     94:       EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
                     95: *     ..
                     96: *     .. Executable Statements ..
                     97: *
                     98: *     Test the input parameters.
                     99: *
                    100:       INFO = 0
                    101: *
                    102:       IF( N.LT.0 ) THEN
                    103:          INFO = -1
                    104:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    105:          INFO = -2
                    106:       END IF
                    107: *
                    108:       M = N + SQRE
                    109: *
                    110:       IF( LDU.LT.N ) THEN
                    111:          INFO = -6
                    112:       ELSE IF( LDVT.LT.M ) THEN
                    113:          INFO = -8
                    114:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    115:          INFO = -9
                    116:       END IF
                    117:       IF( INFO.NE.0 ) THEN
                    118:          CALL XERBLA( 'DLASD0', -INFO )
                    119:          RETURN
                    120:       END IF
                    121: *
                    122: *     If the input matrix is too small, call DLASDQ to find the SVD.
                    123: *
                    124:       IF( N.LE.SMLSIZ ) THEN
                    125:          CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
                    126:      $                LDU, WORK, INFO )
                    127:          RETURN
                    128:       END IF
                    129: *
                    130: *     Set up the computation tree.
                    131: *
                    132:       INODE = 1
                    133:       NDIML = INODE + N
                    134:       NDIMR = NDIML + N
                    135:       IDXQ = NDIMR + N
                    136:       IWK = IDXQ + N
                    137:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    138:      $             IWORK( NDIMR ), SMLSIZ )
                    139: *
                    140: *     For the nodes on bottom level of the tree, solve
                    141: *     their subproblems by DLASDQ.
                    142: *
                    143:       NDB1 = ( ND+1 ) / 2
                    144:       NCC = 0
                    145:       DO 30 I = NDB1, ND
                    146: *
                    147: *     IC : center row of each node
                    148: *     NL : number of rows of left  subproblem
                    149: *     NR : number of rows of right subproblem
                    150: *     NLF: starting row of the left   subproblem
                    151: *     NRF: starting row of the right  subproblem
                    152: *
                    153:          I1 = I - 1
                    154:          IC = IWORK( INODE+I1 )
                    155:          NL = IWORK( NDIML+I1 )
                    156:          NLP1 = NL + 1
                    157:          NR = IWORK( NDIMR+I1 )
                    158:          NRP1 = NR + 1
                    159:          NLF = IC - NL
                    160:          NRF = IC + 1
                    161:          SQREI = 1
                    162:          CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
                    163:      $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
                    164:      $                U( NLF, NLF ), LDU, WORK, INFO )
                    165:          IF( INFO.NE.0 ) THEN
                    166:             RETURN
                    167:          END IF
                    168:          ITEMP = IDXQ + NLF - 2
                    169:          DO 10 J = 1, NL
                    170:             IWORK( ITEMP+J ) = J
                    171:    10    CONTINUE
                    172:          IF( I.EQ.ND ) THEN
                    173:             SQREI = SQRE
                    174:          ELSE
                    175:             SQREI = 1
                    176:          END IF
                    177:          NRP1 = NR + SQREI
                    178:          CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
                    179:      $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
                    180:      $                U( NRF, NRF ), LDU, WORK, INFO )
                    181:          IF( INFO.NE.0 ) THEN
                    182:             RETURN
                    183:          END IF
                    184:          ITEMP = IDXQ + IC
                    185:          DO 20 J = 1, NR
                    186:             IWORK( ITEMP+J-1 ) = J
                    187:    20    CONTINUE
                    188:    30 CONTINUE
                    189: *
                    190: *     Now conquer each subproblem bottom-up.
                    191: *
                    192:       DO 50 LVL = NLVL, 1, -1
                    193: *
                    194: *        Find the first node LF and last node LL on the
                    195: *        current level LVL.
                    196: *
                    197:          IF( LVL.EQ.1 ) THEN
                    198:             LF = 1
                    199:             LL = 1
                    200:          ELSE
                    201:             LF = 2**( LVL-1 )
                    202:             LL = 2*LF - 1
                    203:          END IF
                    204:          DO 40 I = LF, LL
                    205:             IM1 = I - 1
                    206:             IC = IWORK( INODE+IM1 )
                    207:             NL = IWORK( NDIML+IM1 )
                    208:             NR = IWORK( NDIMR+IM1 )
                    209:             NLF = IC - NL
                    210:             IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
                    211:                SQREI = SQRE
                    212:             ELSE
                    213:                SQREI = 1
                    214:             END IF
                    215:             IDXQC = IDXQ + NLF - 1
                    216:             ALPHA = D( IC )
                    217:             BETA = E( IC )
                    218:             CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
                    219:      $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
                    220:      $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
                    221:             IF( INFO.NE.0 ) THEN
                    222:                RETURN
                    223:             END IF
                    224:    40    CONTINUE
                    225:    50 CONTINUE
                    226: *
                    227:       RETURN
                    228: *
                    229: *     End of DLASD0
                    230: *
                    231:       END

CVSweb interface <joel.bertrand@systella.fr>