Annotation of rpl/lapack/lapack/dlasd0.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b DLASD0
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASD0 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd0.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd0.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd0.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
        !            22: *                          WORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IWORK( * )
        !            29: *       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
        !            30: *      $                   WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> Using a divide and conquer approach, DLASD0 computes the singular
        !            40: *> value decomposition (SVD) of a real upper bidiagonal N-by-M
        !            41: *> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
        !            42: *> The algorithm computes orthogonal matrices U and VT such that
        !            43: *> B = U * S * VT. The singular values S are overwritten on D.
        !            44: *>
        !            45: *> A related subroutine, DLASDA, computes only the singular values,
        !            46: *> and optionally, the singular vectors in compact form.
        !            47: *> \endverbatim
        !            48: *
        !            49: *  Arguments:
        !            50: *  ==========
        !            51: *
        !            52: *> \param[in] N
        !            53: *> \verbatim
        !            54: *>          N is INTEGER
        !            55: *>         On entry, the row dimension of the upper bidiagonal matrix.
        !            56: *>         This is also the dimension of the main diagonal array D.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in] SQRE
        !            60: *> \verbatim
        !            61: *>          SQRE is INTEGER
        !            62: *>         Specifies the column dimension of the bidiagonal matrix.
        !            63: *>         = 0: The bidiagonal matrix has column dimension M = N;
        !            64: *>         = 1: The bidiagonal matrix has column dimension M = N+1;
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in,out] D
        !            68: *> \verbatim
        !            69: *>          D is DOUBLE PRECISION array, dimension (N)
        !            70: *>         On entry D contains the main diagonal of the bidiagonal
        !            71: *>         matrix.
        !            72: *>         On exit D, if INFO = 0, contains its singular values.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] E
        !            76: *> \verbatim
        !            77: *>          E is DOUBLE PRECISION array, dimension (M-1)
        !            78: *>         Contains the subdiagonal entries of the bidiagonal matrix.
        !            79: *>         On exit, E has been destroyed.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[out] U
        !            83: *> \verbatim
        !            84: *>          U is DOUBLE PRECISION array, dimension at least (LDQ, N)
        !            85: *>         On exit, U contains the left singular vectors.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in] LDU
        !            89: *> \verbatim
        !            90: *>          LDU is INTEGER
        !            91: *>         On entry, leading dimension of U.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] VT
        !            95: *> \verbatim
        !            96: *>          VT is DOUBLE PRECISION array, dimension at least (LDVT, M)
        !            97: *>         On exit, VT**T contains the right singular vectors.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] LDVT
        !           101: *> \verbatim
        !           102: *>          LDVT is INTEGER
        !           103: *>         On entry, leading dimension of VT.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] SMLSIZ
        !           107: *> \verbatim
        !           108: *>          SMLSIZ is INTEGER
        !           109: *>         On entry, maximum size of the subproblems at the
        !           110: *>         bottom of the computation tree.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] IWORK
        !           114: *> \verbatim
        !           115: *>          IWORK is INTEGER work array.
        !           116: *>         Dimension must be at least (8 * N)
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[out] WORK
        !           120: *> \verbatim
        !           121: *>          WORK is DOUBLE PRECISION work array.
        !           122: *>         Dimension must be at least (3 * M**2 + 2 * M)
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[out] INFO
        !           126: *> \verbatim
        !           127: *>          INFO is INTEGER
        !           128: *>          = 0:  successful exit.
        !           129: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           130: *>          > 0:  if INFO = 1, a singular value did not converge
        !           131: *> \endverbatim
        !           132: *
        !           133: *  Authors:
        !           134: *  ========
        !           135: *
        !           136: *> \author Univ. of Tennessee 
        !           137: *> \author Univ. of California Berkeley 
        !           138: *> \author Univ. of Colorado Denver 
        !           139: *> \author NAG Ltd. 
        !           140: *
        !           141: *> \date November 2011
        !           142: *
        !           143: *> \ingroup auxOTHERauxiliary
        !           144: *
        !           145: *> \par Contributors:
        !           146: *  ==================
        !           147: *>
        !           148: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           149: *>     California at Berkeley, USA
        !           150: *>
        !           151: *  =====================================================================
1.1       bertrand  152:       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
                    153:      $                   WORK, INFO )
                    154: *
1.10    ! bertrand  155: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  156: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    157: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  158: *     November 2011
1.1       bertrand  159: *
                    160: *     .. Scalar Arguments ..
                    161:       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
                    162: *     ..
                    163: *     .. Array Arguments ..
                    164:       INTEGER            IWORK( * )
                    165:       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
                    166:      $                   WORK( * )
                    167: *     ..
                    168: *
                    169: *  =====================================================================
                    170: *
                    171: *     .. Local Scalars ..
                    172:       INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
                    173:      $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
                    174:      $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
                    175:       DOUBLE PRECISION   ALPHA, BETA
                    176: *     ..
                    177: *     .. External Subroutines ..
                    178:       EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
                    179: *     ..
                    180: *     .. Executable Statements ..
                    181: *
                    182: *     Test the input parameters.
                    183: *
                    184:       INFO = 0
                    185: *
                    186:       IF( N.LT.0 ) THEN
                    187:          INFO = -1
                    188:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    189:          INFO = -2
                    190:       END IF
                    191: *
                    192:       M = N + SQRE
                    193: *
                    194:       IF( LDU.LT.N ) THEN
                    195:          INFO = -6
                    196:       ELSE IF( LDVT.LT.M ) THEN
                    197:          INFO = -8
                    198:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    199:          INFO = -9
                    200:       END IF
                    201:       IF( INFO.NE.0 ) THEN
                    202:          CALL XERBLA( 'DLASD0', -INFO )
                    203:          RETURN
                    204:       END IF
                    205: *
                    206: *     If the input matrix is too small, call DLASDQ to find the SVD.
                    207: *
                    208:       IF( N.LE.SMLSIZ ) THEN
                    209:          CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
                    210:      $                LDU, WORK, INFO )
                    211:          RETURN
                    212:       END IF
                    213: *
                    214: *     Set up the computation tree.
                    215: *
                    216:       INODE = 1
                    217:       NDIML = INODE + N
                    218:       NDIMR = NDIML + N
                    219:       IDXQ = NDIMR + N
                    220:       IWK = IDXQ + N
                    221:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    222:      $             IWORK( NDIMR ), SMLSIZ )
                    223: *
                    224: *     For the nodes on bottom level of the tree, solve
                    225: *     their subproblems by DLASDQ.
                    226: *
                    227:       NDB1 = ( ND+1 ) / 2
                    228:       NCC = 0
                    229:       DO 30 I = NDB1, ND
                    230: *
                    231: *     IC : center row of each node
                    232: *     NL : number of rows of left  subproblem
                    233: *     NR : number of rows of right subproblem
                    234: *     NLF: starting row of the left   subproblem
                    235: *     NRF: starting row of the right  subproblem
                    236: *
                    237:          I1 = I - 1
                    238:          IC = IWORK( INODE+I1 )
                    239:          NL = IWORK( NDIML+I1 )
                    240:          NLP1 = NL + 1
                    241:          NR = IWORK( NDIMR+I1 )
                    242:          NRP1 = NR + 1
                    243:          NLF = IC - NL
                    244:          NRF = IC + 1
                    245:          SQREI = 1
                    246:          CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
                    247:      $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
                    248:      $                U( NLF, NLF ), LDU, WORK, INFO )
                    249:          IF( INFO.NE.0 ) THEN
                    250:             RETURN
                    251:          END IF
                    252:          ITEMP = IDXQ + NLF - 2
                    253:          DO 10 J = 1, NL
                    254:             IWORK( ITEMP+J ) = J
                    255:    10    CONTINUE
                    256:          IF( I.EQ.ND ) THEN
                    257:             SQREI = SQRE
                    258:          ELSE
                    259:             SQREI = 1
                    260:          END IF
                    261:          NRP1 = NR + SQREI
                    262:          CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
                    263:      $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
                    264:      $                U( NRF, NRF ), LDU, WORK, INFO )
                    265:          IF( INFO.NE.0 ) THEN
                    266:             RETURN
                    267:          END IF
                    268:          ITEMP = IDXQ + IC
                    269:          DO 20 J = 1, NR
                    270:             IWORK( ITEMP+J-1 ) = J
                    271:    20    CONTINUE
                    272:    30 CONTINUE
                    273: *
                    274: *     Now conquer each subproblem bottom-up.
                    275: *
                    276:       DO 50 LVL = NLVL, 1, -1
                    277: *
                    278: *        Find the first node LF and last node LL on the
                    279: *        current level LVL.
                    280: *
                    281:          IF( LVL.EQ.1 ) THEN
                    282:             LF = 1
                    283:             LL = 1
                    284:          ELSE
                    285:             LF = 2**( LVL-1 )
                    286:             LL = 2*LF - 1
                    287:          END IF
                    288:          DO 40 I = LF, LL
                    289:             IM1 = I - 1
                    290:             IC = IWORK( INODE+IM1 )
                    291:             NL = IWORK( NDIML+IM1 )
                    292:             NR = IWORK( NDIMR+IM1 )
                    293:             NLF = IC - NL
                    294:             IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
                    295:                SQREI = SQRE
                    296:             ELSE
                    297:                SQREI = 1
                    298:             END IF
                    299:             IDXQC = IDXQ + NLF - 1
                    300:             ALPHA = D( IC )
                    301:             BETA = E( IC )
                    302:             CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
                    303:      $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
                    304:      $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
                    305:             IF( INFO.NE.0 ) THEN
                    306:                RETURN
                    307:             END IF
                    308:    40    CONTINUE
                    309:    50 CONTINUE
                    310: *
                    311:       RETURN
                    312: *
                    313: *     End of DLASD0
                    314: *
                    315:       END

CVSweb interface <joel.bertrand@systella.fr>