Annotation of rpl/lapack/lapack/dlasd0.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
        !             2:      $                   WORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       INTEGER            IWORK( * )
        !            14:       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
        !            15:      $                   WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  Using a divide and conquer approach, DLASD0 computes the singular
        !            22: *  value decomposition (SVD) of a real upper bidiagonal N-by-M
        !            23: *  matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
        !            24: *  The algorithm computes orthogonal matrices U and VT such that
        !            25: *  B = U * S * VT. The singular values S are overwritten on D.
        !            26: *
        !            27: *  A related subroutine, DLASDA, computes only the singular values,
        !            28: *  and optionally, the singular vectors in compact form.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  N      (input) INTEGER
        !            34: *         On entry, the row dimension of the upper bidiagonal matrix.
        !            35: *         This is also the dimension of the main diagonal array D.
        !            36: *
        !            37: *  SQRE   (input) INTEGER
        !            38: *         Specifies the column dimension of the bidiagonal matrix.
        !            39: *         = 0: The bidiagonal matrix has column dimension M = N;
        !            40: *         = 1: The bidiagonal matrix has column dimension M = N+1;
        !            41: *
        !            42: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
        !            43: *         On entry D contains the main diagonal of the bidiagonal
        !            44: *         matrix.
        !            45: *         On exit D, if INFO = 0, contains its singular values.
        !            46: *
        !            47: *  E      (input) DOUBLE PRECISION array, dimension (M-1)
        !            48: *         Contains the subdiagonal entries of the bidiagonal matrix.
        !            49: *         On exit, E has been destroyed.
        !            50: *
        !            51: *  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
        !            52: *         On exit, U contains the left singular vectors.
        !            53: *
        !            54: *  LDU    (input) INTEGER
        !            55: *         On entry, leading dimension of U.
        !            56: *
        !            57: *  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
        !            58: *         On exit, VT' contains the right singular vectors.
        !            59: *
        !            60: *  LDVT   (input) INTEGER
        !            61: *         On entry, leading dimension of VT.
        !            62: *
        !            63: *  SMLSIZ (input) INTEGER
        !            64: *         On entry, maximum size of the subproblems at the
        !            65: *         bottom of the computation tree.
        !            66: *
        !            67: *  IWORK  (workspace) INTEGER work array.
        !            68: *         Dimension must be at least (8 * N)
        !            69: *
        !            70: *  WORK   (workspace) DOUBLE PRECISION work array.
        !            71: *         Dimension must be at least (3 * M**2 + 2 * M)
        !            72: *
        !            73: *  INFO   (output) INTEGER
        !            74: *          = 0:  successful exit.
        !            75: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            76: *          > 0:  if INFO = 1, an singular value did not converge
        !            77: *
        !            78: *  Further Details
        !            79: *  ===============
        !            80: *
        !            81: *  Based on contributions by
        !            82: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !            83: *     California at Berkeley, USA
        !            84: *
        !            85: *  =====================================================================
        !            86: *
        !            87: *     .. Local Scalars ..
        !            88:       INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
        !            89:      $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
        !            90:      $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
        !            91:       DOUBLE PRECISION   ALPHA, BETA
        !            92: *     ..
        !            93: *     .. External Subroutines ..
        !            94:       EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
        !            95: *     ..
        !            96: *     .. Executable Statements ..
        !            97: *
        !            98: *     Test the input parameters.
        !            99: *
        !           100:       INFO = 0
        !           101: *
        !           102:       IF( N.LT.0 ) THEN
        !           103:          INFO = -1
        !           104:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           105:          INFO = -2
        !           106:       END IF
        !           107: *
        !           108:       M = N + SQRE
        !           109: *
        !           110:       IF( LDU.LT.N ) THEN
        !           111:          INFO = -6
        !           112:       ELSE IF( LDVT.LT.M ) THEN
        !           113:          INFO = -8
        !           114:       ELSE IF( SMLSIZ.LT.3 ) THEN
        !           115:          INFO = -9
        !           116:       END IF
        !           117:       IF( INFO.NE.0 ) THEN
        !           118:          CALL XERBLA( 'DLASD0', -INFO )
        !           119:          RETURN
        !           120:       END IF
        !           121: *
        !           122: *     If the input matrix is too small, call DLASDQ to find the SVD.
        !           123: *
        !           124:       IF( N.LE.SMLSIZ ) THEN
        !           125:          CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
        !           126:      $                LDU, WORK, INFO )
        !           127:          RETURN
        !           128:       END IF
        !           129: *
        !           130: *     Set up the computation tree.
        !           131: *
        !           132:       INODE = 1
        !           133:       NDIML = INODE + N
        !           134:       NDIMR = NDIML + N
        !           135:       IDXQ = NDIMR + N
        !           136:       IWK = IDXQ + N
        !           137:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
        !           138:      $             IWORK( NDIMR ), SMLSIZ )
        !           139: *
        !           140: *     For the nodes on bottom level of the tree, solve
        !           141: *     their subproblems by DLASDQ.
        !           142: *
        !           143:       NDB1 = ( ND+1 ) / 2
        !           144:       NCC = 0
        !           145:       DO 30 I = NDB1, ND
        !           146: *
        !           147: *     IC : center row of each node
        !           148: *     NL : number of rows of left  subproblem
        !           149: *     NR : number of rows of right subproblem
        !           150: *     NLF: starting row of the left   subproblem
        !           151: *     NRF: starting row of the right  subproblem
        !           152: *
        !           153:          I1 = I - 1
        !           154:          IC = IWORK( INODE+I1 )
        !           155:          NL = IWORK( NDIML+I1 )
        !           156:          NLP1 = NL + 1
        !           157:          NR = IWORK( NDIMR+I1 )
        !           158:          NRP1 = NR + 1
        !           159:          NLF = IC - NL
        !           160:          NRF = IC + 1
        !           161:          SQREI = 1
        !           162:          CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
        !           163:      $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
        !           164:      $                U( NLF, NLF ), LDU, WORK, INFO )
        !           165:          IF( INFO.NE.0 ) THEN
        !           166:             RETURN
        !           167:          END IF
        !           168:          ITEMP = IDXQ + NLF - 2
        !           169:          DO 10 J = 1, NL
        !           170:             IWORK( ITEMP+J ) = J
        !           171:    10    CONTINUE
        !           172:          IF( I.EQ.ND ) THEN
        !           173:             SQREI = SQRE
        !           174:          ELSE
        !           175:             SQREI = 1
        !           176:          END IF
        !           177:          NRP1 = NR + SQREI
        !           178:          CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
        !           179:      $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
        !           180:      $                U( NRF, NRF ), LDU, WORK, INFO )
        !           181:          IF( INFO.NE.0 ) THEN
        !           182:             RETURN
        !           183:          END IF
        !           184:          ITEMP = IDXQ + IC
        !           185:          DO 20 J = 1, NR
        !           186:             IWORK( ITEMP+J-1 ) = J
        !           187:    20    CONTINUE
        !           188:    30 CONTINUE
        !           189: *
        !           190: *     Now conquer each subproblem bottom-up.
        !           191: *
        !           192:       DO 50 LVL = NLVL, 1, -1
        !           193: *
        !           194: *        Find the first node LF and last node LL on the
        !           195: *        current level LVL.
        !           196: *
        !           197:          IF( LVL.EQ.1 ) THEN
        !           198:             LF = 1
        !           199:             LL = 1
        !           200:          ELSE
        !           201:             LF = 2**( LVL-1 )
        !           202:             LL = 2*LF - 1
        !           203:          END IF
        !           204:          DO 40 I = LF, LL
        !           205:             IM1 = I - 1
        !           206:             IC = IWORK( INODE+IM1 )
        !           207:             NL = IWORK( NDIML+IM1 )
        !           208:             NR = IWORK( NDIMR+IM1 )
        !           209:             NLF = IC - NL
        !           210:             IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
        !           211:                SQREI = SQRE
        !           212:             ELSE
        !           213:                SQREI = 1
        !           214:             END IF
        !           215:             IDXQC = IDXQ + NLF - 1
        !           216:             ALPHA = D( IC )
        !           217:             BETA = E( IC )
        !           218:             CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
        !           219:      $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
        !           220:      $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
        !           221:             IF( INFO.NE.0 ) THEN
        !           222:                RETURN
        !           223:             END IF
        !           224:    40    CONTINUE
        !           225:    50 CONTINUE
        !           226: *
        !           227:       RETURN
        !           228: *
        !           229: *     End of DLASD0
        !           230: *
        !           231:       END

CVSweb interface <joel.bertrand@systella.fr>