File:  [local] / rpl / lapack / lapack / dlarzb.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:07 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
    2:      $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
    3: *
    4: *  -- LAPACK routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIRECT, SIDE, STOREV, TRANS
   11:       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
   15:      $                   WORK( LDWORK, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLARZB applies a real block reflector H or its transpose H**T to
   22: *  a real distributed M-by-N  C from the left or the right.
   23: *
   24: *  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
   25: *
   26: *  Arguments
   27: *  =========
   28: *
   29: *  SIDE    (input) CHARACTER*1
   30: *          = 'L': apply H or H**T from the Left
   31: *          = 'R': apply H or H**T from the Right
   32: *
   33: *  TRANS   (input) CHARACTER*1
   34: *          = 'N': apply H (No transpose)
   35: *          = 'C': apply H**T (Transpose)
   36: *
   37: *  DIRECT  (input) CHARACTER*1
   38: *          Indicates how H is formed from a product of elementary
   39: *          reflectors
   40: *          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
   41: *          = 'B': H = H(k) . . . H(2) H(1) (Backward)
   42: *
   43: *  STOREV  (input) CHARACTER*1
   44: *          Indicates how the vectors which define the elementary
   45: *          reflectors are stored:
   46: *          = 'C': Columnwise                        (not supported yet)
   47: *          = 'R': Rowwise
   48: *
   49: *  M       (input) INTEGER
   50: *          The number of rows of the matrix C.
   51: *
   52: *  N       (input) INTEGER
   53: *          The number of columns of the matrix C.
   54: *
   55: *  K       (input) INTEGER
   56: *          The order of the matrix T (= the number of elementary
   57: *          reflectors whose product defines the block reflector).
   58: *
   59: *  L       (input) INTEGER
   60: *          The number of columns of the matrix V containing the
   61: *          meaningful part of the Householder reflectors.
   62: *          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
   63: *
   64: *  V       (input) DOUBLE PRECISION array, dimension (LDV,NV).
   65: *          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
   66: *
   67: *  LDV     (input) INTEGER
   68: *          The leading dimension of the array V.
   69: *          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
   70: *
   71: *  T       (input) DOUBLE PRECISION array, dimension (LDT,K)
   72: *          The triangular K-by-K matrix T in the representation of the
   73: *          block reflector.
   74: *
   75: *  LDT     (input) INTEGER
   76: *          The leading dimension of the array T. LDT >= K.
   77: *
   78: *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
   79: *          On entry, the M-by-N matrix C.
   80: *          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
   81: *
   82: *  LDC     (input) INTEGER
   83: *          The leading dimension of the array C. LDC >= max(1,M).
   84: *
   85: *  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
   86: *
   87: *  LDWORK  (input) INTEGER
   88: *          The leading dimension of the array WORK.
   89: *          If SIDE = 'L', LDWORK >= max(1,N);
   90: *          if SIDE = 'R', LDWORK >= max(1,M).
   91: *
   92: *  Further Details
   93: *  ===============
   94: *
   95: *  Based on contributions by
   96: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
   97: *
   98: *  =====================================================================
   99: *
  100: *     .. Parameters ..
  101:       DOUBLE PRECISION   ONE
  102:       PARAMETER          ( ONE = 1.0D+0 )
  103: *     ..
  104: *     .. Local Scalars ..
  105:       CHARACTER          TRANST
  106:       INTEGER            I, INFO, J
  107: *     ..
  108: *     .. External Functions ..
  109:       LOGICAL            LSAME
  110:       EXTERNAL           LSAME
  111: *     ..
  112: *     .. External Subroutines ..
  113:       EXTERNAL           DCOPY, DGEMM, DTRMM, XERBLA
  114: *     ..
  115: *     .. Executable Statements ..
  116: *
  117: *     Quick return if possible
  118: *
  119:       IF( M.LE.0 .OR. N.LE.0 )
  120:      $   RETURN
  121: *
  122: *     Check for currently supported options
  123: *
  124:       INFO = 0
  125:       IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
  126:          INFO = -3
  127:       ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
  128:          INFO = -4
  129:       END IF
  130:       IF( INFO.NE.0 ) THEN
  131:          CALL XERBLA( 'DLARZB', -INFO )
  132:          RETURN
  133:       END IF
  134: *
  135:       IF( LSAME( TRANS, 'N' ) ) THEN
  136:          TRANST = 'T'
  137:       ELSE
  138:          TRANST = 'N'
  139:       END IF
  140: *
  141:       IF( LSAME( SIDE, 'L' ) ) THEN
  142: *
  143: *        Form  H * C  or  H**T * C
  144: *
  145: *        W( 1:n, 1:k ) = C( 1:k, 1:n )**T
  146: *
  147:          DO 10 J = 1, K
  148:             CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  149:    10    CONTINUE
  150: *
  151: *        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
  152: *                        C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
  153: *
  154:          IF( L.GT.0 )
  155:      $      CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
  156:      $                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
  157: *
  158: *        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
  159: *
  160:          CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
  161:      $               LDT, WORK, LDWORK )
  162: *
  163: *        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
  164: *
  165:          DO 30 J = 1, N
  166:             DO 20 I = 1, K
  167:                C( I, J ) = C( I, J ) - WORK( J, I )
  168:    20       CONTINUE
  169:    30    CONTINUE
  170: *
  171: *        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
  172: *                            V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
  173: *
  174:          IF( L.GT.0 )
  175:      $      CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
  176:      $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
  177: *
  178:       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  179: *
  180: *        Form  C * H  or  C * H**T
  181: *
  182: *        W( 1:m, 1:k ) = C( 1:m, 1:k )
  183: *
  184:          DO 40 J = 1, K
  185:             CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  186:    40    CONTINUE
  187: *
  188: *        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
  189: *                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
  190: *
  191:          IF( L.GT.0 )
  192:      $      CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
  193:      $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
  194: *
  195: *        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T**T
  196: *
  197:          CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
  198:      $               LDT, WORK, LDWORK )
  199: *
  200: *        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
  201: *
  202:          DO 60 J = 1, K
  203:             DO 50 I = 1, M
  204:                C( I, J ) = C( I, J ) - WORK( I, J )
  205:    50       CONTINUE
  206:    60    CONTINUE
  207: *
  208: *        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
  209: *                            W( 1:m, 1:k ) * V( 1:k, 1:l )
  210: *
  211:          IF( L.GT.0 )
  212:      $      CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
  213:      $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
  214: *
  215:       END IF
  216: *
  217:       RETURN
  218: *
  219: *     End of DLARZB
  220: *
  221:       END

CVSweb interface <joel.bertrand@systella.fr>