Annotation of rpl/lapack/lapack/dlarzb.f, revision 1.19

1.12      bertrand    1: *> \brief \b DLARZB applies a block reflector or its transpose to a general matrix.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLARZB + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarzb.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarzb.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarzb.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
                     22: *                          LDV, T, LDT, C, LDC, WORK, LDWORK )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          DIRECT, SIDE, STOREV, TRANS
                     26: *       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
                     30: *      $                   WORK( LDWORK, * )
                     31: *       ..
1.16      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLARZB applies a real block reflector H or its transpose H**T to
                     40: *> a real distributed M-by-N  C from the left or the right.
                     41: *>
                     42: *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] SIDE
                     49: *> \verbatim
                     50: *>          SIDE is CHARACTER*1
                     51: *>          = 'L': apply H or H**T from the Left
                     52: *>          = 'R': apply H or H**T from the Right
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] TRANS
                     56: *> \verbatim
                     57: *>          TRANS is CHARACTER*1
                     58: *>          = 'N': apply H (No transpose)
                     59: *>          = 'C': apply H**T (Transpose)
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] DIRECT
                     63: *> \verbatim
                     64: *>          DIRECT is CHARACTER*1
                     65: *>          Indicates how H is formed from a product of elementary
                     66: *>          reflectors
                     67: *>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
                     68: *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] STOREV
                     72: *> \verbatim
                     73: *>          STOREV is CHARACTER*1
                     74: *>          Indicates how the vectors which define the elementary
                     75: *>          reflectors are stored:
                     76: *>          = 'C': Columnwise                        (not supported yet)
                     77: *>          = 'R': Rowwise
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] M
                     81: *> \verbatim
                     82: *>          M is INTEGER
                     83: *>          The number of rows of the matrix C.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>          The number of columns of the matrix C.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] K
                     93: *> \verbatim
                     94: *>          K is INTEGER
                     95: *>          The order of the matrix T (= the number of elementary
                     96: *>          reflectors whose product defines the block reflector).
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] L
                    100: *> \verbatim
                    101: *>          L is INTEGER
                    102: *>          The number of columns of the matrix V containing the
                    103: *>          meaningful part of the Householder reflectors.
                    104: *>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] V
                    108: *> \verbatim
                    109: *>          V is DOUBLE PRECISION array, dimension (LDV,NV).
                    110: *>          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] LDV
                    114: *> \verbatim
                    115: *>          LDV is INTEGER
                    116: *>          The leading dimension of the array V.
                    117: *>          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] T
                    121: *> \verbatim
                    122: *>          T is DOUBLE PRECISION array, dimension (LDT,K)
                    123: *>          The triangular K-by-K matrix T in the representation of the
                    124: *>          block reflector.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDT
                    128: *> \verbatim
                    129: *>          LDT is INTEGER
                    130: *>          The leading dimension of the array T. LDT >= K.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in,out] C
                    134: *> \verbatim
                    135: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
                    136: *>          On entry, the M-by-N matrix C.
                    137: *>          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LDC
                    141: *> \verbatim
                    142: *>          LDC is INTEGER
                    143: *>          The leading dimension of the array C. LDC >= max(1,M).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] WORK
                    147: *> \verbatim
                    148: *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] LDWORK
                    152: *> \verbatim
                    153: *>          LDWORK is INTEGER
                    154: *>          The leading dimension of the array WORK.
                    155: *>          If SIDE = 'L', LDWORK >= max(1,N);
                    156: *>          if SIDE = 'R', LDWORK >= max(1,M).
                    157: *> \endverbatim
                    158: *
                    159: *  Authors:
                    160: *  ========
                    161: *
1.16      bertrand  162: *> \author Univ. of Tennessee
                    163: *> \author Univ. of California Berkeley
                    164: *> \author Univ. of Colorado Denver
                    165: *> \author NAG Ltd.
1.9       bertrand  166: *
                    167: *> \ingroup doubleOTHERcomputational
                    168: *
                    169: *> \par Contributors:
                    170: *  ==================
                    171: *>
                    172: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    173: *
                    174: *> \par Further Details:
                    175: *  =====================
                    176: *>
                    177: *> \verbatim
                    178: *> \endverbatim
                    179: *>
                    180: *  =====================================================================
1.1       bertrand  181:       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
                    182:      $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
                    183: *
1.19    ! bertrand  184: *  -- LAPACK computational routine --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    187: *
                    188: *     .. Scalar Arguments ..
                    189:       CHARACTER          DIRECT, SIDE, STOREV, TRANS
                    190:       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
                    194:      $                   WORK( LDWORK, * )
                    195: *     ..
                    196: *
                    197: *  =====================================================================
                    198: *
                    199: *     .. Parameters ..
                    200:       DOUBLE PRECISION   ONE
                    201:       PARAMETER          ( ONE = 1.0D+0 )
                    202: *     ..
                    203: *     .. Local Scalars ..
                    204:       CHARACTER          TRANST
                    205:       INTEGER            I, INFO, J
                    206: *     ..
                    207: *     .. External Functions ..
                    208:       LOGICAL            LSAME
                    209:       EXTERNAL           LSAME
                    210: *     ..
                    211: *     .. External Subroutines ..
                    212:       EXTERNAL           DCOPY, DGEMM, DTRMM, XERBLA
                    213: *     ..
                    214: *     .. Executable Statements ..
                    215: *
                    216: *     Quick return if possible
                    217: *
                    218:       IF( M.LE.0 .OR. N.LE.0 )
                    219:      $   RETURN
                    220: *
                    221: *     Check for currently supported options
                    222: *
                    223:       INFO = 0
                    224:       IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
                    225:          INFO = -3
                    226:       ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
                    227:          INFO = -4
                    228:       END IF
                    229:       IF( INFO.NE.0 ) THEN
                    230:          CALL XERBLA( 'DLARZB', -INFO )
                    231:          RETURN
                    232:       END IF
                    233: *
                    234:       IF( LSAME( TRANS, 'N' ) ) THEN
                    235:          TRANST = 'T'
                    236:       ELSE
                    237:          TRANST = 'N'
                    238:       END IF
                    239: *
                    240:       IF( LSAME( SIDE, 'L' ) ) THEN
                    241: *
1.8       bertrand  242: *        Form  H * C  or  H**T * C
1.1       bertrand  243: *
1.8       bertrand  244: *        W( 1:n, 1:k ) = C( 1:k, 1:n )**T
1.1       bertrand  245: *
                    246:          DO 10 J = 1, K
                    247:             CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
                    248:    10    CONTINUE
                    249: *
                    250: *        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
1.8       bertrand  251: *                        C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
1.1       bertrand  252: *
                    253:          IF( L.GT.0 )
                    254:      $      CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
                    255:      $                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
                    256: *
1.8       bertrand  257: *        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
1.1       bertrand  258: *
                    259:          CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
                    260:      $               LDT, WORK, LDWORK )
                    261: *
1.8       bertrand  262: *        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
1.1       bertrand  263: *
                    264:          DO 30 J = 1, N
                    265:             DO 20 I = 1, K
                    266:                C( I, J ) = C( I, J ) - WORK( J, I )
                    267:    20       CONTINUE
                    268:    30    CONTINUE
                    269: *
                    270: *        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
1.8       bertrand  271: *                            V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
1.1       bertrand  272: *
                    273:          IF( L.GT.0 )
                    274:      $      CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
                    275:      $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
                    276: *
                    277:       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
                    278: *
1.8       bertrand  279: *        Form  C * H  or  C * H**T
1.1       bertrand  280: *
                    281: *        W( 1:m, 1:k ) = C( 1:m, 1:k )
                    282: *
                    283:          DO 40 J = 1, K
                    284:             CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
                    285:    40    CONTINUE
                    286: *
                    287: *        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
1.8       bertrand  288: *                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
1.1       bertrand  289: *
                    290:          IF( L.GT.0 )
                    291:      $      CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
                    292:      $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
                    293: *
1.8       bertrand  294: *        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T**T
1.1       bertrand  295: *
                    296:          CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
                    297:      $               LDT, WORK, LDWORK )
                    298: *
                    299: *        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
                    300: *
                    301:          DO 60 J = 1, K
                    302:             DO 50 I = 1, M
                    303:                C( I, J ) = C( I, J ) - WORK( I, J )
                    304:    50       CONTINUE
                    305:    60    CONTINUE
                    306: *
                    307: *        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
                    308: *                            W( 1:m, 1:k ) * V( 1:k, 1:l )
                    309: *
                    310:          IF( L.GT.0 )
                    311:      $      CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
                    312:      $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
                    313: *
                    314:       END IF
                    315: *
                    316:       RETURN
                    317: *
                    318: *     End of DLARZB
                    319: *
                    320:       END

CVSweb interface <joel.bertrand@systella.fr>