File:  [local] / rpl / lapack / lapack / dlarrv.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:32 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
    2:      $                   ISPLIT, M, DOL, DOU, MINRGP,
    3:      $                   RTOL1, RTOL2, W, WERR, WGAP,
    4:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
    5:      $                   WORK, IWORK, INFO )
    6: *
    7: *  -- LAPACK auxiliary routine (version 3.2.2) --
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *     June 2010
   11: *
   12: *     .. Scalar Arguments ..
   13:       INTEGER            DOL, DOU, INFO, LDZ, M, N
   14:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   18:      $                   ISUPPZ( * ), IWORK( * )
   19:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   20:      $                   WGAP( * ), WORK( * )
   21:       DOUBLE PRECISION  Z( LDZ, * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26: *
   27: *  DLARRV computes the eigenvectors of the tridiagonal matrix
   28: *  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.
   29: *  The input eigenvalues should have been computed by DLARRE.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  N       (input) INTEGER
   35: *          The order of the matrix.  N >= 0.
   36: *
   37: *  VL      (input) DOUBLE PRECISION
   38: *  VU      (input) DOUBLE PRECISION
   39: *          Lower and upper bounds of the interval that contains the desired
   40: *          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   41: *          end of the extremal eigenvalues in the desired RANGE.
   42: *
   43: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   44: *          On entry, the N diagonal elements of the diagonal matrix D.
   45: *          On exit, D may be overwritten.
   46: *
   47: *  L       (input/output) DOUBLE PRECISION array, dimension (N)
   48: *          On entry, the (N-1) subdiagonal elements of the unit
   49: *          bidiagonal matrix L are in elements 1 to N-1 of L
   50: *          (if the matrix is not splitted.) At the end of each block
   51: *          is stored the corresponding shift as given by DLARRE.
   52: *          On exit, L is overwritten.
   53: *
   54: *  PIVMIN  (input) DOUBLE PRECISION
   55: *          The minimum pivot allowed in the Sturm sequence.
   56: *
   57: *  ISPLIT  (input) INTEGER array, dimension (N)
   58: *          The splitting points, at which T breaks up into blocks.
   59: *          The first block consists of rows/columns 1 to
   60: *          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
   61: *          through ISPLIT( 2 ), etc.
   62: *
   63: *  M       (input) INTEGER
   64: *          The total number of input eigenvalues.  0 <= M <= N.
   65: *
   66: *  DOL     (input) INTEGER
   67: *  DOU     (input) INTEGER
   68: *          If the user wants to compute only selected eigenvectors from all
   69: *          the eigenvalues supplied, he can specify an index range DOL:DOU.
   70: *          Or else the setting DOL=1, DOU=M should be applied.
   71: *          Note that DOL and DOU refer to the order in which the eigenvalues
   72: *          are stored in W.
   73: *          If the user wants to compute only selected eigenpairs, then
   74: *          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
   75: *          computed eigenvectors. All other columns of Z are set to zero.
   76: *
   77: *  MINRGP  (input) DOUBLE PRECISION
   78: *
   79: *  RTOL1   (input) DOUBLE PRECISION
   80: *  RTOL2   (input) DOUBLE PRECISION
   81: *           Parameters for bisection.
   82: *           An interval [LEFT,RIGHT] has converged if
   83: *           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
   84: *
   85: *  W       (input/output) DOUBLE PRECISION array, dimension (N)
   86: *          The first M elements of W contain the APPROXIMATE eigenvalues for
   87: *          which eigenvectors are to be computed.  The eigenvalues
   88: *          should be grouped by split-off block and ordered from
   89: *          smallest to largest within the block ( The output array
   90: *          W from DLARRE is expected here ). Furthermore, they are with
   91: *          respect to the shift of the corresponding root representation
   92: *          for their block. On exit, W holds the eigenvalues of the
   93: *          UNshifted matrix.
   94: *
   95: *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
   96: *          The first M elements contain the semiwidth of the uncertainty
   97: *          interval of the corresponding eigenvalue in W
   98: *
   99: *  WGAP    (input/output) DOUBLE PRECISION array, dimension (N)
  100: *          The separation from the right neighbor eigenvalue in W.
  101: *
  102: *  IBLOCK  (input) INTEGER array, dimension (N)
  103: *          The indices of the blocks (submatrices) associated with the
  104: *          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  105: *          W(i) belongs to the first block from the top, =2 if W(i)
  106: *          belongs to the second block, etc.
  107: *
  108: *  INDEXW  (input) INTEGER array, dimension (N)
  109: *          The indices of the eigenvalues within each block (submatrix);
  110: *          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  111: *          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  112: *
  113: *  GERS    (input) DOUBLE PRECISION array, dimension (2*N)
  114: *          The N Gerschgorin intervals (the i-th Gerschgorin interval
  115: *          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  116: *          be computed from the original UNshifted matrix.
  117: *
  118: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  119: *          If INFO = 0, the first M columns of Z contain the
  120: *          orthonormal eigenvectors of the matrix T
  121: *          corresponding to the input eigenvalues, with the i-th
  122: *          column of Z holding the eigenvector associated with W(i).
  123: *          Note: the user must ensure that at least max(1,M) columns are
  124: *          supplied in the array Z.
  125: *
  126: *  LDZ     (input) INTEGER
  127: *          The leading dimension of the array Z.  LDZ >= 1, and if
  128: *          JOBZ = 'V', LDZ >= max(1,N).
  129: *
  130: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
  131: *          The support of the eigenvectors in Z, i.e., the indices
  132: *          indicating the nonzero elements in Z. The I-th eigenvector
  133: *          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  134: *          ISUPPZ( 2*I ).
  135: *
  136: *  WORK    (workspace) DOUBLE PRECISION array, dimension (12*N)
  137: *
  138: *  IWORK   (workspace) INTEGER array, dimension (7*N)
  139: *
  140: *  INFO    (output) INTEGER
  141: *          = 0:  successful exit
  142: *
  143: *          > 0:  A problem occured in DLARRV.
  144: *          < 0:  One of the called subroutines signaled an internal problem.
  145: *                Needs inspection of the corresponding parameter IINFO
  146: *                for further information.
  147: *
  148: *          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  149: *          =-2:  Problem in DLARRF when computing the RRR of a child.
  150: *                When a child is inside a tight cluster, it can be difficult
  151: *                to find an RRR. A partial remedy from the user's point of
  152: *                view is to make the parameter MINRGP smaller and recompile.
  153: *                However, as the orthogonality of the computed vectors is
  154: *                proportional to 1/MINRGP, the user should be aware that
  155: *                he might be trading in precision when he decreases MINRGP.
  156: *          =-3:  Problem in DLARRB when refining a single eigenvalue
  157: *                after the Rayleigh correction was rejected.
  158: *          = 5:  The Rayleigh Quotient Iteration failed to converge to
  159: *                full accuracy in MAXITR steps.
  160: *
  161: *  Further Details
  162: *  ===============
  163: *
  164: *  Based on contributions by
  165: *     Beresford Parlett, University of California, Berkeley, USA
  166: *     Jim Demmel, University of California, Berkeley, USA
  167: *     Inderjit Dhillon, University of Texas, Austin, USA
  168: *     Osni Marques, LBNL/NERSC, USA
  169: *     Christof Voemel, University of California, Berkeley, USA
  170: *
  171: *  =====================================================================
  172: *
  173: *     .. Parameters ..
  174:       INTEGER            MAXITR
  175:       PARAMETER          ( MAXITR = 10 )
  176:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  177:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  178:      $                     TWO = 2.0D0, THREE = 3.0D0,
  179:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  180: *     ..
  181: *     .. Local Scalars ..
  182:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  183:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  184:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  185:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  186:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  187:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  188:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  189:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  190:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  191:      $                   ZUSEDW
  192:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  193:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  194:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  195:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  196: *     ..
  197: *     .. External Functions ..
  198:       DOUBLE PRECISION   DLAMCH
  199:       EXTERNAL           DLAMCH
  200: *     ..
  201: *     .. External Subroutines ..
  202:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
  203:      $                   DSCAL
  204: *     ..
  205: *     .. Intrinsic Functions ..
  206:       INTRINSIC ABS, DBLE, MAX, MIN
  207: *     ..
  208: *     .. Executable Statements ..
  209: *     ..
  210: 
  211: *     The first N entries of WORK are reserved for the eigenvalues
  212:       INDLD = N+1
  213:       INDLLD= 2*N+1
  214:       INDWRK= 3*N+1
  215:       MINWSIZE = 12 * N
  216: 
  217:       DO 5 I= 1,MINWSIZE
  218:          WORK( I ) = ZERO
  219:  5    CONTINUE
  220: 
  221: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  222: *     factorization used to compute the FP vector
  223:       IINDR = 0
  224: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  225: *     layer and the one above.
  226:       IINDC1 = N
  227:       IINDC2 = 2*N
  228:       IINDWK = 3*N + 1
  229: 
  230:       MINIWSIZE = 7 * N
  231:       DO 10 I= 1,MINIWSIZE
  232:          IWORK( I ) = 0
  233:  10   CONTINUE
  234: 
  235:       ZUSEDL = 1
  236:       IF(DOL.GT.1) THEN
  237: *        Set lower bound for use of Z
  238:          ZUSEDL = DOL-1
  239:       ENDIF
  240:       ZUSEDU = M
  241:       IF(DOU.LT.M) THEN
  242: *        Set lower bound for use of Z
  243:          ZUSEDU = DOU+1
  244:       ENDIF
  245: *     The width of the part of Z that is used
  246:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  247: 
  248: 
  249:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
  250:      $                    Z(1,ZUSEDL), LDZ )
  251: 
  252:       EPS = DLAMCH( 'Precision' )
  253:       RQTOL = TWO * EPS
  254: *
  255: *     Set expert flags for standard code.
  256:       TRYRQC = .TRUE.
  257: 
  258:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  259:       ELSE
  260: *        Only selected eigenpairs are computed. Since the other evalues
  261: *        are not refined by RQ iteration, bisection has to compute to full
  262: *        accuracy.
  263:          RTOL1 = FOUR * EPS
  264:          RTOL2 = FOUR * EPS
  265:       ENDIF
  266: 
  267: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  268: *     desired eigenvalues. The support of the nonzero eigenvector
  269: *     entries is contained in the interval IBEGIN:IEND.
  270: *     Remark that if k eigenpairs are desired, then the eigenvectors
  271: *     are stored in k contiguous columns of Z.
  272: 
  273: *     DONE is the number of eigenvectors already computed
  274:       DONE = 0
  275:       IBEGIN = 1
  276:       WBEGIN = 1
  277:       DO 170 JBLK = 1, IBLOCK( M )
  278:          IEND = ISPLIT( JBLK )
  279:          SIGMA = L( IEND )
  280: *        Find the eigenvectors of the submatrix indexed IBEGIN
  281: *        through IEND.
  282:          WEND = WBEGIN - 1
  283:  15      CONTINUE
  284:          IF( WEND.LT.M ) THEN
  285:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  286:                WEND = WEND + 1
  287:                GO TO 15
  288:             END IF
  289:          END IF
  290:          IF( WEND.LT.WBEGIN ) THEN
  291:             IBEGIN = IEND + 1
  292:             GO TO 170
  293:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  294:             IBEGIN = IEND + 1
  295:             WBEGIN = WEND + 1
  296:             GO TO 170
  297:          END IF
  298: 
  299: *        Find local spectral diameter of the block
  300:          GL = GERS( 2*IBEGIN-1 )
  301:          GU = GERS( 2*IBEGIN )
  302:          DO 20 I = IBEGIN+1 , IEND
  303:             GL = MIN( GERS( 2*I-1 ), GL )
  304:             GU = MAX( GERS( 2*I ), GU )
  305:  20      CONTINUE
  306:          SPDIAM = GU - GL
  307: 
  308: *        OLDIEN is the last index of the previous block
  309:          OLDIEN = IBEGIN - 1
  310: *        Calculate the size of the current block
  311:          IN = IEND - IBEGIN + 1
  312: *        The number of eigenvalues in the current block
  313:          IM = WEND - WBEGIN + 1
  314: 
  315: *        This is for a 1x1 block
  316:          IF( IBEGIN.EQ.IEND ) THEN
  317:             DONE = DONE+1
  318:             Z( IBEGIN, WBEGIN ) = ONE
  319:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  320:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  321:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  322:             WORK( WBEGIN ) = W( WBEGIN )
  323:             IBEGIN = IEND + 1
  324:             WBEGIN = WBEGIN + 1
  325:             GO TO 170
  326:          END IF
  327: 
  328: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  329: *        Note that these can be approximations, in this case, the corresp.
  330: *        entries of WERR give the size of the uncertainty interval.
  331: *        The eigenvalue approximations will be refined when necessary as
  332: *        high relative accuracy is required for the computation of the
  333: *        corresponding eigenvectors.
  334:          CALL DCOPY( IM, W( WBEGIN ), 1,
  335:      &                   WORK( WBEGIN ), 1 )
  336: 
  337: *        We store in W the eigenvalue approximations w.r.t. the original
  338: *        matrix T.
  339:          DO 30 I=1,IM
  340:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  341:  30      CONTINUE
  342: 
  343: 
  344: *        NDEPTH is the current depth of the representation tree
  345:          NDEPTH = 0
  346: *        PARITY is either 1 or 0
  347:          PARITY = 1
  348: *        NCLUS is the number of clusters for the next level of the
  349: *        representation tree, we start with NCLUS = 1 for the root
  350:          NCLUS = 1
  351:          IWORK( IINDC1+1 ) = 1
  352:          IWORK( IINDC1+2 ) = IM
  353: 
  354: *        IDONE is the number of eigenvectors already computed in the current
  355: *        block
  356:          IDONE = 0
  357: *        loop while( IDONE.LT.IM )
  358: *        generate the representation tree for the current block and
  359: *        compute the eigenvectors
  360:    40    CONTINUE
  361:          IF( IDONE.LT.IM ) THEN
  362: *           This is a crude protection against infinitely deep trees
  363:             IF( NDEPTH.GT.M ) THEN
  364:                INFO = -2
  365:                RETURN
  366:             ENDIF
  367: *           breadth first processing of the current level of the representation
  368: *           tree: OLDNCL = number of clusters on current level
  369:             OLDNCL = NCLUS
  370: *           reset NCLUS to count the number of child clusters
  371:             NCLUS = 0
  372: *
  373:             PARITY = 1 - PARITY
  374:             IF( PARITY.EQ.0 ) THEN
  375:                OLDCLS = IINDC1
  376:                NEWCLS = IINDC2
  377:             ELSE
  378:                OLDCLS = IINDC2
  379:                NEWCLS = IINDC1
  380:             END IF
  381: *           Process the clusters on the current level
  382:             DO 150 I = 1, OLDNCL
  383:                J = OLDCLS + 2*I
  384: *              OLDFST, OLDLST = first, last index of current cluster.
  385: *                               cluster indices start with 1 and are relative
  386: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  387:                OLDFST = IWORK( J-1 )
  388:                OLDLST = IWORK( J )
  389:                IF( NDEPTH.GT.0 ) THEN
  390: *                 Retrieve relatively robust representation (RRR) of cluster
  391: *                 that has been computed at the previous level
  392: *                 The RRR is stored in Z and overwritten once the eigenvectors
  393: *                 have been computed or when the cluster is refined
  394: 
  395:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  396: *                    Get representation from location of the leftmost evalue
  397: *                    of the cluster
  398:                      J = WBEGIN + OLDFST - 1
  399:                   ELSE
  400:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  401: *                       Get representation from the left end of Z array
  402:                         J = DOL - 1
  403:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  404: *                       Get representation from the right end of Z array
  405:                         J = DOU
  406:                      ELSE
  407:                         J = WBEGIN + OLDFST - 1
  408:                      ENDIF
  409:                   ENDIF
  410:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
  411:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
  412:      $               1 )
  413:                   SIGMA = Z( IEND, J+1 )
  414: 
  415: *                 Set the corresponding entries in Z to zero
  416:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
  417:      $                         Z( IBEGIN, J), LDZ )
  418:                END IF
  419: 
  420: *              Compute DL and DLL of current RRR
  421:                DO 50 J = IBEGIN, IEND-1
  422:                   TMP = D( J )*L( J )
  423:                   WORK( INDLD-1+J ) = TMP
  424:                   WORK( INDLLD-1+J ) = TMP*L( J )
  425:    50          CONTINUE
  426: 
  427:                IF( NDEPTH.GT.0 ) THEN
  428: *                 P and Q are index of the first and last eigenvalue to compute
  429: *                 within the current block
  430:                   P = INDEXW( WBEGIN-1+OLDFST )
  431:                   Q = INDEXW( WBEGIN-1+OLDLST )
  432: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  433: *                 through the Q-OFFSET elements of these arrays are to be used.
  434: C                  OFFSET = P-OLDFST
  435:                   OFFSET = INDEXW( WBEGIN ) - 1
  436: *                 perform limited bisection (if necessary) to get approximate
  437: *                 eigenvalues to the precision needed.
  438:                   CALL DLARRB( IN, D( IBEGIN ),
  439:      $                         WORK(INDLLD+IBEGIN-1),
  440:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  441:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  442:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  443:      $                         PIVMIN, SPDIAM, IN, IINFO )
  444:                   IF( IINFO.NE.0 ) THEN
  445:                      INFO = -1
  446:                      RETURN
  447:                   ENDIF
  448: *                 We also recompute the extremal gaps. W holds all eigenvalues
  449: *                 of the unshifted matrix and must be used for computation
  450: *                 of WGAP, the entries of WORK might stem from RRRs with
  451: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  452: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  453: *                 However, we only allow the gaps to become greater since
  454: *                 this is what should happen when we decrease WERR
  455:                   IF( OLDFST.GT.1) THEN
  456:                      WGAP( WBEGIN+OLDFST-2 ) =
  457:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  458:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  459:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  460:                   ENDIF
  461:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  462:                      WGAP( WBEGIN+OLDLST-1 ) =
  463:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  464:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  465:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  466:                   ENDIF
  467: *                 Each time the eigenvalues in WORK get refined, we store
  468: *                 the newly found approximation with all shifts applied in W
  469:                   DO 53 J=OLDFST,OLDLST
  470:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  471:  53               CONTINUE
  472:                END IF
  473: 
  474: *              Process the current node.
  475:                NEWFST = OLDFST
  476:                DO 140 J = OLDFST, OLDLST
  477:                   IF( J.EQ.OLDLST ) THEN
  478: *                    we are at the right end of the cluster, this is also the
  479: *                    boundary of the child cluster
  480:                      NEWLST = J
  481:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  482:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  483: *                    the right relative gap is big enough, the child cluster
  484: *                    (NEWFST,..,NEWLST) is well separated from the following
  485:                      NEWLST = J
  486:                    ELSE
  487: *                    inside a child cluster, the relative gap is not
  488: *                    big enough.
  489:                      GOTO 140
  490:                   END IF
  491: 
  492: *                 Compute size of child cluster found
  493:                   NEWSIZ = NEWLST - NEWFST + 1
  494: 
  495: *                 NEWFTT is the place in Z where the new RRR or the computed
  496: *                 eigenvector is to be stored
  497:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  498: *                    Store representation at location of the leftmost evalue
  499: *                    of the cluster
  500:                      NEWFTT = WBEGIN + NEWFST - 1
  501:                   ELSE
  502:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  503: *                       Store representation at the left end of Z array
  504:                         NEWFTT = DOL - 1
  505:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  506: *                       Store representation at the right end of Z array
  507:                         NEWFTT = DOU
  508:                      ELSE
  509:                         NEWFTT = WBEGIN + NEWFST - 1
  510:                      ENDIF
  511:                   ENDIF
  512: 
  513:                   IF( NEWSIZ.GT.1) THEN
  514: *
  515: *                    Current child is not a singleton but a cluster.
  516: *                    Compute and store new representation of child.
  517: *
  518: *
  519: *                    Compute left and right cluster gap.
  520: *
  521: *                    LGAP and RGAP are not computed from WORK because
  522: *                    the eigenvalue approximations may stem from RRRs
  523: *                    different shifts. However, W hold all eigenvalues
  524: *                    of the unshifted matrix. Still, the entries in WGAP
  525: *                    have to be computed from WORK since the entries
  526: *                    in W might be of the same order so that gaps are not
  527: *                    exhibited correctly for very close eigenvalues.
  528:                      IF( NEWFST.EQ.1 ) THEN
  529:                         LGAP = MAX( ZERO,
  530:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  531:                     ELSE
  532:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  533:                      ENDIF
  534:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  535: *
  536: *                    Compute left- and rightmost eigenvalue of child
  537: *                    to high precision in order to shift as close
  538: *                    as possible and obtain as large relative gaps
  539: *                    as possible
  540: *
  541:                      DO 55 K =1,2
  542:                         IF(K.EQ.1) THEN
  543:                            P = INDEXW( WBEGIN-1+NEWFST )
  544:                         ELSE
  545:                            P = INDEXW( WBEGIN-1+NEWLST )
  546:                         ENDIF
  547:                         OFFSET = INDEXW( WBEGIN ) - 1
  548:                         CALL DLARRB( IN, D(IBEGIN),
  549:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  550:      $                       RQTOL, RQTOL, OFFSET,
  551:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  552:      $                       WERR(WBEGIN),WORK( INDWRK ),
  553:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  554:      $                       IN, IINFO )
  555:  55                  CONTINUE
  556: *
  557:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  558:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  559: *                       if the cluster contains no desired eigenvalues
  560: *                       skip the computation of that branch of the rep. tree
  561: *
  562: *                       We could skip before the refinement of the extremal
  563: *                       eigenvalues of the child, but then the representation
  564: *                       tree could be different from the one when nothing is
  565: *                       skipped. For this reason we skip at this place.
  566:                         IDONE = IDONE + NEWLST - NEWFST + 1
  567:                         GOTO 139
  568:                      ENDIF
  569: *
  570: *                    Compute RRR of child cluster.
  571: *                    Note that the new RRR is stored in Z
  572: *
  573: C                    DLARRF needs LWORK = 2*N
  574:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  575:      $                         WORK(INDLD+IBEGIN-1),
  576:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  577:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  578:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  579:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
  580:      $                         WORK( INDWRK ), IINFO )
  581:                      IF( IINFO.EQ.0 ) THEN
  582: *                       a new RRR for the cluster was found by DLARRF
  583: *                       update shift and store it
  584:                         SSIGMA = SIGMA + TAU
  585:                         Z( IEND, NEWFTT+1 ) = SSIGMA
  586: *                       WORK() are the midpoints and WERR() the semi-width
  587: *                       Note that the entries in W are unchanged.
  588:                         DO 116 K = NEWFST, NEWLST
  589:                            FUDGE =
  590:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  591:                            WORK( WBEGIN + K - 1 ) =
  592:      $                          WORK( WBEGIN + K - 1) - TAU
  593:                            FUDGE = FUDGE +
  594:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  595: *                          Fudge errors
  596:                            WERR( WBEGIN + K - 1 ) =
  597:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  598: *                          Gaps are not fudged. Provided that WERR is small
  599: *                          when eigenvalues are close, a zero gap indicates
  600: *                          that a new representation is needed for resolving
  601: *                          the cluster. A fudge could lead to a wrong decision
  602: *                          of judging eigenvalues 'separated' which in
  603: *                          reality are not. This could have a negative impact
  604: *                          on the orthogonality of the computed eigenvectors.
  605:  116                    CONTINUE
  606: 
  607:                         NCLUS = NCLUS + 1
  608:                         K = NEWCLS + 2*NCLUS
  609:                         IWORK( K-1 ) = NEWFST
  610:                         IWORK( K ) = NEWLST
  611:                      ELSE
  612:                         INFO = -2
  613:                         RETURN
  614:                      ENDIF
  615:                   ELSE
  616: *
  617: *                    Compute eigenvector of singleton
  618: *
  619:                      ITER = 0
  620: *
  621:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  622: *
  623:                      K = NEWFST
  624:                      WINDEX = WBEGIN + K - 1
  625:                      WINDMN = MAX(WINDEX - 1,1)
  626:                      WINDPL = MIN(WINDEX + 1,M)
  627:                      LAMBDA = WORK( WINDEX )
  628:                      DONE = DONE + 1
  629: *                    Check if eigenvector computation is to be skipped
  630:                      IF((WINDEX.LT.DOL).OR.
  631:      $                  (WINDEX.GT.DOU)) THEN
  632:                         ESKIP = .TRUE.
  633:                         GOTO 125
  634:                      ELSE
  635:                         ESKIP = .FALSE.
  636:                      ENDIF
  637:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  638:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  639:                      INDEIG = INDEXW( WINDEX )
  640: *                    Note that since we compute the eigenpairs for a child,
  641: *                    all eigenvalue approximations are w.r.t the same shift.
  642: *                    In this case, the entries in WORK should be used for
  643: *                    computing the gaps since they exhibit even very small
  644: *                    differences in the eigenvalues, as opposed to the
  645: *                    entries in W which might "look" the same.
  646: 
  647:                      IF( K .EQ. 1) THEN
  648: *                       In the case RANGE='I' and with not much initial
  649: *                       accuracy in LAMBDA and VL, the formula
  650: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  651: *                       can lead to an overestimation of the left gap and
  652: *                       thus to inadequately early RQI 'convergence'.
  653: *                       Prevent this by forcing a small left gap.
  654:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  655:                      ELSE
  656:                         LGAP = WGAP(WINDMN)
  657:                      ENDIF
  658:                      IF( K .EQ. IM) THEN
  659: *                       In the case RANGE='I' and with not much initial
  660: *                       accuracy in LAMBDA and VU, the formula
  661: *                       can lead to an overestimation of the right gap and
  662: *                       thus to inadequately early RQI 'convergence'.
  663: *                       Prevent this by forcing a small right gap.
  664:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  665:                      ELSE
  666:                         RGAP = WGAP(WINDEX)
  667:                      ENDIF
  668:                      GAP = MIN( LGAP, RGAP )
  669:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  670: *                       The eigenvector support can become wrong
  671: *                       because significant entries could be cut off due to a
  672: *                       large GAPTOL parameter in LAR1V. Prevent this.
  673:                         GAPTOL = ZERO
  674:                      ELSE
  675:                         GAPTOL = GAP * EPS
  676:                      ENDIF
  677:                      ISUPMN = IN
  678:                      ISUPMX = 1
  679: *                    Update WGAP so that it holds the minimum gap
  680: *                    to the left or the right. This is crucial in the
  681: *                    case where bisection is used to ensure that the
  682: *                    eigenvalue is refined up to the required precision.
  683: *                    The correct value is restored afterwards.
  684:                      SAVGAP = WGAP(WINDEX)
  685:                      WGAP(WINDEX) = GAP
  686: *                    We want to use the Rayleigh Quotient Correction
  687: *                    as often as possible since it converges quadratically
  688: *                    when we are close enough to the desired eigenvalue.
  689: *                    However, the Rayleigh Quotient can have the wrong sign
  690: *                    and lead us away from the desired eigenvalue. In this
  691: *                    case, the best we can do is to use bisection.
  692:                      USEDBS = .FALSE.
  693:                      USEDRQ = .FALSE.
  694: *                    Bisection is initially turned off unless it is forced
  695:                      NEEDBS =  .NOT.TRYRQC
  696:  120                 CONTINUE
  697: *                    Check if bisection should be used to refine eigenvalue
  698:                      IF(NEEDBS) THEN
  699: *                       Take the bisection as new iterate
  700:                         USEDBS = .TRUE.
  701:                         ITMP1 = IWORK( IINDR+WINDEX )
  702:                         OFFSET = INDEXW( WBEGIN ) - 1
  703:                         CALL DLARRB( IN, D(IBEGIN),
  704:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  705:      $                       ZERO, TWO*EPS, OFFSET,
  706:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  707:      $                       WERR(WBEGIN),WORK( INDWRK ),
  708:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  709:      $                       ITMP1, IINFO )
  710:                         IF( IINFO.NE.0 ) THEN
  711:                            INFO = -3
  712:                            RETURN
  713:                         ENDIF
  714:                         LAMBDA = WORK( WINDEX )
  715: *                       Reset twist index from inaccurate LAMBDA to
  716: *                       force computation of true MINGMA
  717:                         IWORK( IINDR+WINDEX ) = 0
  718:                      ENDIF
  719: *                    Given LAMBDA, compute the eigenvector.
  720:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  721:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  722:      $                    WORK(INDLLD+IBEGIN-1),
  723:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  724:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  725:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  726:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  727:                      IF(ITER .EQ. 0) THEN
  728:                         BSTRES = RESID
  729:                         BSTW = LAMBDA
  730:                      ELSEIF(RESID.LT.BSTRES) THEN
  731:                         BSTRES = RESID
  732:                         BSTW = LAMBDA
  733:                      ENDIF
  734:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  735:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  736:                      ITER = ITER + 1
  737: 
  738: *                    sin alpha <= |resid|/gap
  739: *                    Note that both the residual and the gap are
  740: *                    proportional to the matrix, so ||T|| doesn't play
  741: *                    a role in the quotient
  742: 
  743: *
  744: *                    Convergence test for Rayleigh-Quotient iteration
  745: *                    (omitted when Bisection has been used)
  746: *
  747:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  748:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  749:      $                    THEN
  750: *                       We need to check that the RQCORR update doesn't
  751: *                       move the eigenvalue away from the desired one and
  752: *                       towards a neighbor. -> protection with bisection
  753:                         IF(INDEIG.LE.NEGCNT) THEN
  754: *                          The wanted eigenvalue lies to the left
  755:                            SGNDEF = -ONE
  756:                         ELSE
  757: *                          The wanted eigenvalue lies to the right
  758:                            SGNDEF = ONE
  759:                         ENDIF
  760: *                       We only use the RQCORR if it improves the
  761: *                       the iterate reasonably.
  762:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  763:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  764:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  765:      $                       ) THEN
  766:                            USEDRQ = .TRUE.
  767: *                          Store new midpoint of bisection interval in WORK
  768:                            IF(SGNDEF.EQ.ONE) THEN
  769: *                             The current LAMBDA is on the left of the true
  770: *                             eigenvalue
  771:                               LEFT = LAMBDA
  772: *                             We prefer to assume that the error estimate
  773: *                             is correct. We could make the interval not
  774: *                             as a bracket but to be modified if the RQCORR
  775: *                             chooses to. In this case, the RIGHT side should
  776: *                             be modified as follows:
  777: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  778:                            ELSE
  779: *                             The current LAMBDA is on the right of the true
  780: *                             eigenvalue
  781:                               RIGHT = LAMBDA
  782: *                             See comment about assuming the error estimate is
  783: *                             correct above.
  784: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  785:                            ENDIF
  786:                            WORK( WINDEX ) =
  787:      $                       HALF * (RIGHT + LEFT)
  788: *                          Take RQCORR since it has the correct sign and
  789: *                          improves the iterate reasonably
  790:                            LAMBDA = LAMBDA + RQCORR
  791: *                          Update width of error interval
  792:                            WERR( WINDEX ) =
  793:      $                             HALF * (RIGHT-LEFT)
  794:                         ELSE
  795:                            NEEDBS = .TRUE.
  796:                         ENDIF
  797:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  798: *                             The eigenvalue is computed to bisection accuracy
  799: *                             compute eigenvector and stop
  800:                            USEDBS = .TRUE.
  801:                            GOTO 120
  802:                         ELSEIF( ITER.LT.MAXITR ) THEN
  803:                            GOTO 120
  804:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  805:                            NEEDBS = .TRUE.
  806:                            GOTO 120
  807:                         ELSE
  808:                            INFO = 5
  809:                            RETURN
  810:                         END IF
  811:                      ELSE
  812:                         STP2II = .FALSE.
  813:         IF(USEDRQ .AND. USEDBS .AND.
  814:      $                     BSTRES.LE.RESID) THEN
  815:                            LAMBDA = BSTW
  816:                            STP2II = .TRUE.
  817:                         ENDIF
  818:                         IF (STP2II) THEN
  819: *                          improve error angle by second step
  820:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
  821:      $                          D( IBEGIN ), L( IBEGIN ),
  822:      $                          WORK(INDLD+IBEGIN-1),
  823:      $                          WORK(INDLLD+IBEGIN-1),
  824:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  825:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  826:      $                          IWORK( IINDR+WINDEX ),
  827:      $                          ISUPPZ( 2*WINDEX-1 ),
  828:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  829:                         ENDIF
  830:                         WORK( WINDEX ) = LAMBDA
  831:                      END IF
  832: *
  833: *                    Compute FP-vector support w.r.t. whole matrix
  834: *
  835:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  836:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  837:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  838:                      ZTO = ISUPPZ( 2*WINDEX )
  839:                      ISUPMN = ISUPMN + OLDIEN
  840:                      ISUPMX = ISUPMX + OLDIEN
  841: *                    Ensure vector is ok if support in the RQI has changed
  842:                      IF(ISUPMN.LT.ZFROM) THEN
  843:                         DO 122 II = ISUPMN,ZFROM-1
  844:                            Z( II, WINDEX ) = ZERO
  845:  122                    CONTINUE
  846:                      ENDIF
  847:                      IF(ISUPMX.GT.ZTO) THEN
  848:                         DO 123 II = ZTO+1,ISUPMX
  849:                            Z( II, WINDEX ) = ZERO
  850:  123                    CONTINUE
  851:                      ENDIF
  852:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
  853:      $                       Z( ZFROM, WINDEX ), 1 )
  854:  125                 CONTINUE
  855: *                    Update W
  856:                      W( WINDEX ) = LAMBDA+SIGMA
  857: *                    Recompute the gaps on the left and right
  858: *                    But only allow them to become larger and not
  859: *                    smaller (which can only happen through "bad"
  860: *                    cancellation and doesn't reflect the theory
  861: *                    where the initial gaps are underestimated due
  862: *                    to WERR being too crude.)
  863:                      IF(.NOT.ESKIP) THEN
  864:                         IF( K.GT.1) THEN
  865:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
  866:      $                          W(WINDEX)-WERR(WINDEX)
  867:      $                          - W(WINDMN)-WERR(WINDMN) )
  868:                         ENDIF
  869:                         IF( WINDEX.LT.WEND ) THEN
  870:                            WGAP( WINDEX ) = MAX( SAVGAP,
  871:      $                          W( WINDPL )-WERR( WINDPL )
  872:      $                          - W( WINDEX )-WERR( WINDEX) )
  873:                         ENDIF
  874:                      ENDIF
  875:                      IDONE = IDONE + 1
  876:                   ENDIF
  877: *                 here ends the code for the current child
  878: *
  879:  139              CONTINUE
  880: *                 Proceed to any remaining child nodes
  881:                   NEWFST = J + 1
  882:  140           CONTINUE
  883:  150        CONTINUE
  884:             NDEPTH = NDEPTH + 1
  885:             GO TO 40
  886:          END IF
  887:          IBEGIN = IEND + 1
  888:          WBEGIN = WEND + 1
  889:  170  CONTINUE
  890: *
  891: 
  892:       RETURN
  893: *
  894: *     End of DLARRV
  895: *
  896:       END

CVSweb interface <joel.bertrand@systella.fr>