File:  [local] / rpl / lapack / lapack / dlarrv.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:30 2016 UTC (7 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLARRV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26:    27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       DOUBLE PRECISION  Z( LDZ, * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *>          Lower bound of the interval that contains the desired
   63: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   64: *>          end of the extremal eigenvalues in the desired RANGE.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] VU
   68: *> \verbatim
   69: *>          VU is DOUBLE PRECISION
   70: *>          Upper bound of the interval that contains the desired
   71: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   72: *>          end of the extremal eigenvalues in the desired RANGE.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] D
   76: *> \verbatim
   77: *>          D is DOUBLE PRECISION array, dimension (N)
   78: *>          On entry, the N diagonal elements of the diagonal matrix D.
   79: *>          On exit, D may be overwritten.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] L
   83: *> \verbatim
   84: *>          L is DOUBLE PRECISION array, dimension (N)
   85: *>          On entry, the (N-1) subdiagonal elements of the unit
   86: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   87: *>          (if the matrix is not split.) At the end of each block
   88: *>          is stored the corresponding shift as given by DLARRE.
   89: *>          On exit, L is overwritten.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] PIVMIN
   93: *> \verbatim
   94: *>          PIVMIN is DOUBLE PRECISION
   95: *>          The minimum pivot allowed in the Sturm sequence.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] ISPLIT
   99: *> \verbatim
  100: *>          ISPLIT is INTEGER array, dimension (N)
  101: *>          The splitting points, at which T breaks up into blocks.
  102: *>          The first block consists of rows/columns 1 to
  103: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  104: *>          through ISPLIT( 2 ), etc.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] M
  108: *> \verbatim
  109: *>          M is INTEGER
  110: *>          The total number of input eigenvalues.  0 <= M <= N.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] DOL
  114: *> \verbatim
  115: *>          DOL is INTEGER
  116: *> \endverbatim
  117: *>
  118: *> \param[in] DOU
  119: *> \verbatim
  120: *>          DOU is INTEGER
  121: *>          If the user wants to compute only selected eigenvectors from all
  122: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  123: *>          Or else the setting DOL=1, DOU=M should be applied.
  124: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  125: *>          are stored in W.
  126: *>          If the user wants to compute only selected eigenpairs, then
  127: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  128: *>          computed eigenvectors. All other columns of Z are set to zero.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] MINRGP
  132: *> \verbatim
  133: *>          MINRGP is DOUBLE PRECISION
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RTOL1
  137: *> \verbatim
  138: *>          RTOL1 is DOUBLE PRECISION
  139: *> \endverbatim
  140: *>
  141: *> \param[in] RTOL2
  142: *> \verbatim
  143: *>          RTOL2 is DOUBLE PRECISION
  144: *>           Parameters for bisection.
  145: *>           An interval [LEFT,RIGHT] has converged if
  146: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] W
  150: *> \verbatim
  151: *>          W is DOUBLE PRECISION array, dimension (N)
  152: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  153: *>          which eigenvectors are to be computed.  The eigenvalues
  154: *>          should be grouped by split-off block and ordered from
  155: *>          smallest to largest within the block ( The output array
  156: *>          W from DLARRE is expected here ). Furthermore, they are with
  157: *>          respect to the shift of the corresponding root representation
  158: *>          for their block. On exit, W holds the eigenvalues of the
  159: *>          UNshifted matrix.
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] WERR
  163: *> \verbatim
  164: *>          WERR is DOUBLE PRECISION array, dimension (N)
  165: *>          The first M elements contain the semiwidth of the uncertainty
  166: *>          interval of the corresponding eigenvalue in W
  167: *> \endverbatim
  168: *>
  169: *> \param[in,out] WGAP
  170: *> \verbatim
  171: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  172: *>          The separation from the right neighbor eigenvalue in W.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] IBLOCK
  176: *> \verbatim
  177: *>          IBLOCK is INTEGER array, dimension (N)
  178: *>          The indices of the blocks (submatrices) associated with the
  179: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  180: *>          W(i) belongs to the first block from the top, =2 if W(i)
  181: *>          belongs to the second block, etc.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] INDEXW
  185: *> \verbatim
  186: *>          INDEXW is INTEGER array, dimension (N)
  187: *>          The indices of the eigenvalues within each block (submatrix);
  188: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  189: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] GERS
  193: *> \verbatim
  194: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  195: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  196: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  197: *>          be computed from the original UNshifted matrix.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Z
  201: *> \verbatim
  202: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  203: *>          If INFO = 0, the first M columns of Z contain the
  204: *>          orthonormal eigenvectors of the matrix T
  205: *>          corresponding to the input eigenvalues, with the i-th
  206: *>          column of Z holding the eigenvector associated with W(i).
  207: *>          Note: the user must ensure that at least max(1,M) columns are
  208: *>          supplied in the array Z.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] LDZ
  212: *> \verbatim
  213: *>          LDZ is INTEGER
  214: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  215: *>          JOBZ = 'V', LDZ >= max(1,N).
  216: *> \endverbatim
  217: *>
  218: *> \param[out] ISUPPZ
  219: *> \verbatim
  220: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  221: *>          The support of the eigenvectors in Z, i.e., the indices
  222: *>          indicating the nonzero elements in Z. The I-th eigenvector
  223: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  224: *>          ISUPPZ( 2*I ).
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  230: *> \endverbatim
  231: *>
  232: *> \param[out] IWORK
  233: *> \verbatim
  234: *>          IWORK is INTEGER array, dimension (7*N)
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>
  242: *>          > 0:  A problem occurred in DLARRV.
  243: *>          < 0:  One of the called subroutines signaled an internal problem.
  244: *>                Needs inspection of the corresponding parameter IINFO
  245: *>                for further information.
  246: *>
  247: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  248: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  249: *>                When a child is inside a tight cluster, it can be difficult
  250: *>                to find an RRR. A partial remedy from the user's point of
  251: *>                view is to make the parameter MINRGP smaller and recompile.
  252: *>                However, as the orthogonality of the computed vectors is
  253: *>                proportional to 1/MINRGP, the user should be aware that
  254: *>                he might be trading in precision when he decreases MINRGP.
  255: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  256: *>                after the Rayleigh correction was rejected.
  257: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  258: *>                full accuracy in MAXITR steps.
  259: *> \endverbatim
  260: *
  261: *  Authors:
  262: *  ========
  263: *
  264: *> \author Univ. of Tennessee 
  265: *> \author Univ. of California Berkeley 
  266: *> \author Univ. of Colorado Denver 
  267: *> \author NAG Ltd. 
  268: *
  269: *> \date June 2016
  270: *
  271: *> \ingroup doubleOTHERauxiliary
  272: *
  273: *> \par Contributors:
  274: *  ==================
  275: *>
  276: *> Beresford Parlett, University of California, Berkeley, USA \n
  277: *> Jim Demmel, University of California, Berkeley, USA \n
  278: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  279: *> Osni Marques, LBNL/NERSC, USA \n
  280: *> Christof Voemel, University of California, Berkeley, USA
  281: *
  282: *  =====================================================================
  283:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
  284:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  285:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  286:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  287:      $                   WORK, IWORK, INFO )
  288: *
  289: *  -- LAPACK auxiliary routine (version 3.6.1) --
  290: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  291: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  292: *     June 2016
  293: *
  294: *     .. Scalar Arguments ..
  295:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  296:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  297: *     ..
  298: *     .. Array Arguments ..
  299:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  300:      $                   ISUPPZ( * ), IWORK( * )
  301:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  302:      $                   WGAP( * ), WORK( * )
  303:       DOUBLE PRECISION  Z( LDZ, * )
  304: *     ..
  305: *
  306: *  =====================================================================
  307: *
  308: *     .. Parameters ..
  309:       INTEGER            MAXITR
  310:       PARAMETER          ( MAXITR = 10 )
  311:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  312:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  313:      $                     TWO = 2.0D0, THREE = 3.0D0,
  314:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  315: *     ..
  316: *     .. Local Scalars ..
  317:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  318:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  319:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  320:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  321:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  322:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  323:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  324:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  325:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  326:      $                   ZUSEDW
  327:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  328:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  329:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  330:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  331: *     ..
  332: *     .. External Functions ..
  333:       DOUBLE PRECISION   DLAMCH
  334:       EXTERNAL           DLAMCH
  335: *     ..
  336: *     .. External Subroutines ..
  337:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
  338:      $                   DSCAL
  339: *     ..
  340: *     .. Intrinsic Functions ..
  341:       INTRINSIC ABS, DBLE, MAX, MIN
  342: *     ..
  343: *     .. Executable Statements ..
  344: *     ..
  345: 
  346:       INFO = 0
  347: *     The first N entries of WORK are reserved for the eigenvalues
  348:       INDLD = N+1
  349:       INDLLD= 2*N+1
  350:       INDWRK= 3*N+1
  351:       MINWSIZE = 12 * N
  352: 
  353:       DO 5 I= 1,MINWSIZE
  354:          WORK( I ) = ZERO
  355:  5    CONTINUE
  356: 
  357: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  358: *     factorization used to compute the FP vector
  359:       IINDR = 0
  360: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  361: *     layer and the one above.
  362:       IINDC1 = N
  363:       IINDC2 = 2*N
  364:       IINDWK = 3*N + 1
  365: 
  366:       MINIWSIZE = 7 * N
  367:       DO 10 I= 1,MINIWSIZE
  368:          IWORK( I ) = 0
  369:  10   CONTINUE
  370: 
  371:       ZUSEDL = 1
  372:       IF(DOL.GT.1) THEN
  373: *        Set lower bound for use of Z
  374:          ZUSEDL = DOL-1
  375:       ENDIF
  376:       ZUSEDU = M
  377:       IF(DOU.LT.M) THEN
  378: *        Set lower bound for use of Z
  379:          ZUSEDU = DOU+1
  380:       ENDIF
  381: *     The width of the part of Z that is used
  382:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  383: 
  384: 
  385:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
  386:      $                    Z(1,ZUSEDL), LDZ )
  387: 
  388:       EPS = DLAMCH( 'Precision' )
  389:       RQTOL = TWO * EPS
  390: *
  391: *     Set expert flags for standard code.
  392:       TRYRQC = .TRUE.
  393: 
  394:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  395:       ELSE
  396: *        Only selected eigenpairs are computed. Since the other evalues
  397: *        are not refined by RQ iteration, bisection has to compute to full
  398: *        accuracy.
  399:          RTOL1 = FOUR * EPS
  400:          RTOL2 = FOUR * EPS
  401:       ENDIF
  402: 
  403: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  404: *     desired eigenvalues. The support of the nonzero eigenvector
  405: *     entries is contained in the interval IBEGIN:IEND.
  406: *     Remark that if k eigenpairs are desired, then the eigenvectors
  407: *     are stored in k contiguous columns of Z.
  408: 
  409: *     DONE is the number of eigenvectors already computed
  410:       DONE = 0
  411:       IBEGIN = 1
  412:       WBEGIN = 1
  413:       DO 170 JBLK = 1, IBLOCK( M )
  414:          IEND = ISPLIT( JBLK )
  415:          SIGMA = L( IEND )
  416: *        Find the eigenvectors of the submatrix indexed IBEGIN
  417: *        through IEND.
  418:          WEND = WBEGIN - 1
  419:  15      CONTINUE
  420:          IF( WEND.LT.M ) THEN
  421:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  422:                WEND = WEND + 1
  423:                GO TO 15
  424:             END IF
  425:          END IF
  426:          IF( WEND.LT.WBEGIN ) THEN
  427:             IBEGIN = IEND + 1
  428:             GO TO 170
  429:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  430:             IBEGIN = IEND + 1
  431:             WBEGIN = WEND + 1
  432:             GO TO 170
  433:          END IF
  434: 
  435: *        Find local spectral diameter of the block
  436:          GL = GERS( 2*IBEGIN-1 )
  437:          GU = GERS( 2*IBEGIN )
  438:          DO 20 I = IBEGIN+1 , IEND
  439:             GL = MIN( GERS( 2*I-1 ), GL )
  440:             GU = MAX( GERS( 2*I ), GU )
  441:  20      CONTINUE
  442:          SPDIAM = GU - GL
  443: 
  444: *        OLDIEN is the last index of the previous block
  445:          OLDIEN = IBEGIN - 1
  446: *        Calculate the size of the current block
  447:          IN = IEND - IBEGIN + 1
  448: *        The number of eigenvalues in the current block
  449:          IM = WEND - WBEGIN + 1
  450: 
  451: *        This is for a 1x1 block
  452:          IF( IBEGIN.EQ.IEND ) THEN
  453:             DONE = DONE+1
  454:             Z( IBEGIN, WBEGIN ) = ONE
  455:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  456:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  457:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  458:             WORK( WBEGIN ) = W( WBEGIN )
  459:             IBEGIN = IEND + 1
  460:             WBEGIN = WBEGIN + 1
  461:             GO TO 170
  462:          END IF
  463: 
  464: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  465: *        Note that these can be approximations, in this case, the corresp.
  466: *        entries of WERR give the size of the uncertainty interval.
  467: *        The eigenvalue approximations will be refined when necessary as
  468: *        high relative accuracy is required for the computation of the
  469: *        corresponding eigenvectors.
  470:          CALL DCOPY( IM, W( WBEGIN ), 1,
  471:      $                   WORK( WBEGIN ), 1 )
  472: 
  473: *        We store in W the eigenvalue approximations w.r.t. the original
  474: *        matrix T.
  475:          DO 30 I=1,IM
  476:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  477:  30      CONTINUE
  478: 
  479: 
  480: *        NDEPTH is the current depth of the representation tree
  481:          NDEPTH = 0
  482: *        PARITY is either 1 or 0
  483:          PARITY = 1
  484: *        NCLUS is the number of clusters for the next level of the
  485: *        representation tree, we start with NCLUS = 1 for the root
  486:          NCLUS = 1
  487:          IWORK( IINDC1+1 ) = 1
  488:          IWORK( IINDC1+2 ) = IM
  489: 
  490: *        IDONE is the number of eigenvectors already computed in the current
  491: *        block
  492:          IDONE = 0
  493: *        loop while( IDONE.LT.IM )
  494: *        generate the representation tree for the current block and
  495: *        compute the eigenvectors
  496:    40    CONTINUE
  497:          IF( IDONE.LT.IM ) THEN
  498: *           This is a crude protection against infinitely deep trees
  499:             IF( NDEPTH.GT.M ) THEN
  500:                INFO = -2
  501:                RETURN
  502:             ENDIF
  503: *           breadth first processing of the current level of the representation
  504: *           tree: OLDNCL = number of clusters on current level
  505:             OLDNCL = NCLUS
  506: *           reset NCLUS to count the number of child clusters
  507:             NCLUS = 0
  508: *
  509:             PARITY = 1 - PARITY
  510:             IF( PARITY.EQ.0 ) THEN
  511:                OLDCLS = IINDC1
  512:                NEWCLS = IINDC2
  513:             ELSE
  514:                OLDCLS = IINDC2
  515:                NEWCLS = IINDC1
  516:             END IF
  517: *           Process the clusters on the current level
  518:             DO 150 I = 1, OLDNCL
  519:                J = OLDCLS + 2*I
  520: *              OLDFST, OLDLST = first, last index of current cluster.
  521: *                               cluster indices start with 1 and are relative
  522: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  523:                OLDFST = IWORK( J-1 )
  524:                OLDLST = IWORK( J )
  525:                IF( NDEPTH.GT.0 ) THEN
  526: *                 Retrieve relatively robust representation (RRR) of cluster
  527: *                 that has been computed at the previous level
  528: *                 The RRR is stored in Z and overwritten once the eigenvectors
  529: *                 have been computed or when the cluster is refined
  530: 
  531:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  532: *                    Get representation from location of the leftmost evalue
  533: *                    of the cluster
  534:                      J = WBEGIN + OLDFST - 1
  535:                   ELSE
  536:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  537: *                       Get representation from the left end of Z array
  538:                         J = DOL - 1
  539:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  540: *                       Get representation from the right end of Z array
  541:                         J = DOU
  542:                      ELSE
  543:                         J = WBEGIN + OLDFST - 1
  544:                      ENDIF
  545:                   ENDIF
  546:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
  547:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
  548:      $               1 )
  549:                   SIGMA = Z( IEND, J+1 )
  550: 
  551: *                 Set the corresponding entries in Z to zero
  552:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
  553:      $                         Z( IBEGIN, J), LDZ )
  554:                END IF
  555: 
  556: *              Compute DL and DLL of current RRR
  557:                DO 50 J = IBEGIN, IEND-1
  558:                   TMP = D( J )*L( J )
  559:                   WORK( INDLD-1+J ) = TMP
  560:                   WORK( INDLLD-1+J ) = TMP*L( J )
  561:    50          CONTINUE
  562: 
  563:                IF( NDEPTH.GT.0 ) THEN
  564: *                 P and Q are index of the first and last eigenvalue to compute
  565: *                 within the current block
  566:                   P = INDEXW( WBEGIN-1+OLDFST )
  567:                   Q = INDEXW( WBEGIN-1+OLDLST )
  568: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  569: *                 through the Q-OFFSET elements of these arrays are to be used.
  570: *                  OFFSET = P-OLDFST
  571:                   OFFSET = INDEXW( WBEGIN ) - 1
  572: *                 perform limited bisection (if necessary) to get approximate
  573: *                 eigenvalues to the precision needed.
  574:                   CALL DLARRB( IN, D( IBEGIN ),
  575:      $                         WORK(INDLLD+IBEGIN-1),
  576:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  577:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  578:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  579:      $                         PIVMIN, SPDIAM, IN, IINFO )
  580:                   IF( IINFO.NE.0 ) THEN
  581:                      INFO = -1
  582:                      RETURN
  583:                   ENDIF
  584: *                 We also recompute the extremal gaps. W holds all eigenvalues
  585: *                 of the unshifted matrix and must be used for computation
  586: *                 of WGAP, the entries of WORK might stem from RRRs with
  587: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  588: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  589: *                 However, we only allow the gaps to become greater since
  590: *                 this is what should happen when we decrease WERR
  591:                   IF( OLDFST.GT.1) THEN
  592:                      WGAP( WBEGIN+OLDFST-2 ) =
  593:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  594:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  595:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  596:                   ENDIF
  597:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  598:                      WGAP( WBEGIN+OLDLST-1 ) =
  599:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  600:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  601:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  602:                   ENDIF
  603: *                 Each time the eigenvalues in WORK get refined, we store
  604: *                 the newly found approximation with all shifts applied in W
  605:                   DO 53 J=OLDFST,OLDLST
  606:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  607:  53               CONTINUE
  608:                END IF
  609: 
  610: *              Process the current node.
  611:                NEWFST = OLDFST
  612:                DO 140 J = OLDFST, OLDLST
  613:                   IF( J.EQ.OLDLST ) THEN
  614: *                    we are at the right end of the cluster, this is also the
  615: *                    boundary of the child cluster
  616:                      NEWLST = J
  617:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  618:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  619: *                    the right relative gap is big enough, the child cluster
  620: *                    (NEWFST,..,NEWLST) is well separated from the following
  621:                      NEWLST = J
  622:                    ELSE
  623: *                    inside a child cluster, the relative gap is not
  624: *                    big enough.
  625:                      GOTO 140
  626:                   END IF
  627: 
  628: *                 Compute size of child cluster found
  629:                   NEWSIZ = NEWLST - NEWFST + 1
  630: 
  631: *                 NEWFTT is the place in Z where the new RRR or the computed
  632: *                 eigenvector is to be stored
  633:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  634: *                    Store representation at location of the leftmost evalue
  635: *                    of the cluster
  636:                      NEWFTT = WBEGIN + NEWFST - 1
  637:                   ELSE
  638:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  639: *                       Store representation at the left end of Z array
  640:                         NEWFTT = DOL - 1
  641:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  642: *                       Store representation at the right end of Z array
  643:                         NEWFTT = DOU
  644:                      ELSE
  645:                         NEWFTT = WBEGIN + NEWFST - 1
  646:                      ENDIF
  647:                   ENDIF
  648: 
  649:                   IF( NEWSIZ.GT.1) THEN
  650: *
  651: *                    Current child is not a singleton but a cluster.
  652: *                    Compute and store new representation of child.
  653: *
  654: *
  655: *                    Compute left and right cluster gap.
  656: *
  657: *                    LGAP and RGAP are not computed from WORK because
  658: *                    the eigenvalue approximations may stem from RRRs
  659: *                    different shifts. However, W hold all eigenvalues
  660: *                    of the unshifted matrix. Still, the entries in WGAP
  661: *                    have to be computed from WORK since the entries
  662: *                    in W might be of the same order so that gaps are not
  663: *                    exhibited correctly for very close eigenvalues.
  664:                      IF( NEWFST.EQ.1 ) THEN
  665:                         LGAP = MAX( ZERO,
  666:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  667:                     ELSE
  668:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  669:                      ENDIF
  670:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  671: *
  672: *                    Compute left- and rightmost eigenvalue of child
  673: *                    to high precision in order to shift as close
  674: *                    as possible and obtain as large relative gaps
  675: *                    as possible
  676: *
  677:                      DO 55 K =1,2
  678:                         IF(K.EQ.1) THEN
  679:                            P = INDEXW( WBEGIN-1+NEWFST )
  680:                         ELSE
  681:                            P = INDEXW( WBEGIN-1+NEWLST )
  682:                         ENDIF
  683:                         OFFSET = INDEXW( WBEGIN ) - 1
  684:                         CALL DLARRB( IN, D(IBEGIN),
  685:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  686:      $                       RQTOL, RQTOL, OFFSET,
  687:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  688:      $                       WERR(WBEGIN),WORK( INDWRK ),
  689:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  690:      $                       IN, IINFO )
  691:  55                  CONTINUE
  692: *
  693:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  694:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  695: *                       if the cluster contains no desired eigenvalues
  696: *                       skip the computation of that branch of the rep. tree
  697: *
  698: *                       We could skip before the refinement of the extremal
  699: *                       eigenvalues of the child, but then the representation
  700: *                       tree could be different from the one when nothing is
  701: *                       skipped. For this reason we skip at this place.
  702:                         IDONE = IDONE + NEWLST - NEWFST + 1
  703:                         GOTO 139
  704:                      ENDIF
  705: *
  706: *                    Compute RRR of child cluster.
  707: *                    Note that the new RRR is stored in Z
  708: *
  709: *                    DLARRF needs LWORK = 2*N
  710:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  711:      $                         WORK(INDLD+IBEGIN-1),
  712:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  713:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  714:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  715:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
  716:      $                         WORK( INDWRK ), IINFO )
  717:                      IF( IINFO.EQ.0 ) THEN
  718: *                       a new RRR for the cluster was found by DLARRF
  719: *                       update shift and store it
  720:                         SSIGMA = SIGMA + TAU
  721:                         Z( IEND, NEWFTT+1 ) = SSIGMA
  722: *                       WORK() are the midpoints and WERR() the semi-width
  723: *                       Note that the entries in W are unchanged.
  724:                         DO 116 K = NEWFST, NEWLST
  725:                            FUDGE =
  726:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  727:                            WORK( WBEGIN + K - 1 ) =
  728:      $                          WORK( WBEGIN + K - 1) - TAU
  729:                            FUDGE = FUDGE +
  730:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  731: *                          Fudge errors
  732:                            WERR( WBEGIN + K - 1 ) =
  733:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  734: *                          Gaps are not fudged. Provided that WERR is small
  735: *                          when eigenvalues are close, a zero gap indicates
  736: *                          that a new representation is needed for resolving
  737: *                          the cluster. A fudge could lead to a wrong decision
  738: *                          of judging eigenvalues 'separated' which in
  739: *                          reality are not. This could have a negative impact
  740: *                          on the orthogonality of the computed eigenvectors.
  741:  116                    CONTINUE
  742: 
  743:                         NCLUS = NCLUS + 1
  744:                         K = NEWCLS + 2*NCLUS
  745:                         IWORK( K-1 ) = NEWFST
  746:                         IWORK( K ) = NEWLST
  747:                      ELSE
  748:                         INFO = -2
  749:                         RETURN
  750:                      ENDIF
  751:                   ELSE
  752: *
  753: *                    Compute eigenvector of singleton
  754: *
  755:                      ITER = 0
  756: *
  757:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  758: *
  759:                      K = NEWFST
  760:                      WINDEX = WBEGIN + K - 1
  761:                      WINDMN = MAX(WINDEX - 1,1)
  762:                      WINDPL = MIN(WINDEX + 1,M)
  763:                      LAMBDA = WORK( WINDEX )
  764:                      DONE = DONE + 1
  765: *                    Check if eigenvector computation is to be skipped
  766:                      IF((WINDEX.LT.DOL).OR.
  767:      $                  (WINDEX.GT.DOU)) THEN
  768:                         ESKIP = .TRUE.
  769:                         GOTO 125
  770:                      ELSE
  771:                         ESKIP = .FALSE.
  772:                      ENDIF
  773:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  774:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  775:                      INDEIG = INDEXW( WINDEX )
  776: *                    Note that since we compute the eigenpairs for a child,
  777: *                    all eigenvalue approximations are w.r.t the same shift.
  778: *                    In this case, the entries in WORK should be used for
  779: *                    computing the gaps since they exhibit even very small
  780: *                    differences in the eigenvalues, as opposed to the
  781: *                    entries in W which might "look" the same.
  782: 
  783:                      IF( K .EQ. 1) THEN
  784: *                       In the case RANGE='I' and with not much initial
  785: *                       accuracy in LAMBDA and VL, the formula
  786: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  787: *                       can lead to an overestimation of the left gap and
  788: *                       thus to inadequately early RQI 'convergence'.
  789: *                       Prevent this by forcing a small left gap.
  790:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  791:                      ELSE
  792:                         LGAP = WGAP(WINDMN)
  793:                      ENDIF
  794:                      IF( K .EQ. IM) THEN
  795: *                       In the case RANGE='I' and with not much initial
  796: *                       accuracy in LAMBDA and VU, the formula
  797: *                       can lead to an overestimation of the right gap and
  798: *                       thus to inadequately early RQI 'convergence'.
  799: *                       Prevent this by forcing a small right gap.
  800:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  801:                      ELSE
  802:                         RGAP = WGAP(WINDEX)
  803:                      ENDIF
  804:                      GAP = MIN( LGAP, RGAP )
  805:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  806: *                       The eigenvector support can become wrong
  807: *                       because significant entries could be cut off due to a
  808: *                       large GAPTOL parameter in LAR1V. Prevent this.
  809:                         GAPTOL = ZERO
  810:                      ELSE
  811:                         GAPTOL = GAP * EPS
  812:                      ENDIF
  813:                      ISUPMN = IN
  814:                      ISUPMX = 1
  815: *                    Update WGAP so that it holds the minimum gap
  816: *                    to the left or the right. This is crucial in the
  817: *                    case where bisection is used to ensure that the
  818: *                    eigenvalue is refined up to the required precision.
  819: *                    The correct value is restored afterwards.
  820:                      SAVGAP = WGAP(WINDEX)
  821:                      WGAP(WINDEX) = GAP
  822: *                    We want to use the Rayleigh Quotient Correction
  823: *                    as often as possible since it converges quadratically
  824: *                    when we are close enough to the desired eigenvalue.
  825: *                    However, the Rayleigh Quotient can have the wrong sign
  826: *                    and lead us away from the desired eigenvalue. In this
  827: *                    case, the best we can do is to use bisection.
  828:                      USEDBS = .FALSE.
  829:                      USEDRQ = .FALSE.
  830: *                    Bisection is initially turned off unless it is forced
  831:                      NEEDBS =  .NOT.TRYRQC
  832:  120                 CONTINUE
  833: *                    Check if bisection should be used to refine eigenvalue
  834:                      IF(NEEDBS) THEN
  835: *                       Take the bisection as new iterate
  836:                         USEDBS = .TRUE.
  837:                         ITMP1 = IWORK( IINDR+WINDEX )
  838:                         OFFSET = INDEXW( WBEGIN ) - 1
  839:                         CALL DLARRB( IN, D(IBEGIN),
  840:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  841:      $                       ZERO, TWO*EPS, OFFSET,
  842:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  843:      $                       WERR(WBEGIN),WORK( INDWRK ),
  844:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  845:      $                       ITMP1, IINFO )
  846:                         IF( IINFO.NE.0 ) THEN
  847:                            INFO = -3
  848:                            RETURN
  849:                         ENDIF
  850:                         LAMBDA = WORK( WINDEX )
  851: *                       Reset twist index from inaccurate LAMBDA to
  852: *                       force computation of true MINGMA
  853:                         IWORK( IINDR+WINDEX ) = 0
  854:                      ENDIF
  855: *                    Given LAMBDA, compute the eigenvector.
  856:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  857:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  858:      $                    WORK(INDLLD+IBEGIN-1),
  859:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  860:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  861:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  862:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  863:                      IF(ITER .EQ. 0) THEN
  864:                         BSTRES = RESID
  865:                         BSTW = LAMBDA
  866:                      ELSEIF(RESID.LT.BSTRES) THEN
  867:                         BSTRES = RESID
  868:                         BSTW = LAMBDA
  869:                      ENDIF
  870:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  871:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  872:                      ITER = ITER + 1
  873: 
  874: *                    sin alpha <= |resid|/gap
  875: *                    Note that both the residual and the gap are
  876: *                    proportional to the matrix, so ||T|| doesn't play
  877: *                    a role in the quotient
  878: 
  879: *
  880: *                    Convergence test for Rayleigh-Quotient iteration
  881: *                    (omitted when Bisection has been used)
  882: *
  883:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  884:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  885:      $                    THEN
  886: *                       We need to check that the RQCORR update doesn't
  887: *                       move the eigenvalue away from the desired one and
  888: *                       towards a neighbor. -> protection with bisection
  889:                         IF(INDEIG.LE.NEGCNT) THEN
  890: *                          The wanted eigenvalue lies to the left
  891:                            SGNDEF = -ONE
  892:                         ELSE
  893: *                          The wanted eigenvalue lies to the right
  894:                            SGNDEF = ONE
  895:                         ENDIF
  896: *                       We only use the RQCORR if it improves the
  897: *                       the iterate reasonably.
  898:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  899:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  900:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  901:      $                       ) THEN
  902:                            USEDRQ = .TRUE.
  903: *                          Store new midpoint of bisection interval in WORK
  904:                            IF(SGNDEF.EQ.ONE) THEN
  905: *                             The current LAMBDA is on the left of the true
  906: *                             eigenvalue
  907:                               LEFT = LAMBDA
  908: *                             We prefer to assume that the error estimate
  909: *                             is correct. We could make the interval not
  910: *                             as a bracket but to be modified if the RQCORR
  911: *                             chooses to. In this case, the RIGHT side should
  912: *                             be modified as follows:
  913: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  914:                            ELSE
  915: *                             The current LAMBDA is on the right of the true
  916: *                             eigenvalue
  917:                               RIGHT = LAMBDA
  918: *                             See comment about assuming the error estimate is
  919: *                             correct above.
  920: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  921:                            ENDIF
  922:                            WORK( WINDEX ) =
  923:      $                       HALF * (RIGHT + LEFT)
  924: *                          Take RQCORR since it has the correct sign and
  925: *                          improves the iterate reasonably
  926:                            LAMBDA = LAMBDA + RQCORR
  927: *                          Update width of error interval
  928:                            WERR( WINDEX ) =
  929:      $                             HALF * (RIGHT-LEFT)
  930:                         ELSE
  931:                            NEEDBS = .TRUE.
  932:                         ENDIF
  933:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  934: *                             The eigenvalue is computed to bisection accuracy
  935: *                             compute eigenvector and stop
  936:                            USEDBS = .TRUE.
  937:                            GOTO 120
  938:                         ELSEIF( ITER.LT.MAXITR ) THEN
  939:                            GOTO 120
  940:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  941:                            NEEDBS = .TRUE.
  942:                            GOTO 120
  943:                         ELSE
  944:                            INFO = 5
  945:                            RETURN
  946:                         END IF
  947:                      ELSE
  948:                         STP2II = .FALSE.
  949:         IF(USEDRQ .AND. USEDBS .AND.
  950:      $                     BSTRES.LE.RESID) THEN
  951:                            LAMBDA = BSTW
  952:                            STP2II = .TRUE.
  953:                         ENDIF
  954:                         IF (STP2II) THEN
  955: *                          improve error angle by second step
  956:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
  957:      $                          D( IBEGIN ), L( IBEGIN ),
  958:      $                          WORK(INDLD+IBEGIN-1),
  959:      $                          WORK(INDLLD+IBEGIN-1),
  960:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  961:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  962:      $                          IWORK( IINDR+WINDEX ),
  963:      $                          ISUPPZ( 2*WINDEX-1 ),
  964:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  965:                         ENDIF
  966:                         WORK( WINDEX ) = LAMBDA
  967:                      END IF
  968: *
  969: *                    Compute FP-vector support w.r.t. whole matrix
  970: *
  971:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  972:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  973:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  974:                      ZTO = ISUPPZ( 2*WINDEX )
  975:                      ISUPMN = ISUPMN + OLDIEN
  976:                      ISUPMX = ISUPMX + OLDIEN
  977: *                    Ensure vector is ok if support in the RQI has changed
  978:                      IF(ISUPMN.LT.ZFROM) THEN
  979:                         DO 122 II = ISUPMN,ZFROM-1
  980:                            Z( II, WINDEX ) = ZERO
  981:  122                    CONTINUE
  982:                      ENDIF
  983:                      IF(ISUPMX.GT.ZTO) THEN
  984:                         DO 123 II = ZTO+1,ISUPMX
  985:                            Z( II, WINDEX ) = ZERO
  986:  123                    CONTINUE
  987:                      ENDIF
  988:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
  989:      $                       Z( ZFROM, WINDEX ), 1 )
  990:  125                 CONTINUE
  991: *                    Update W
  992:                      W( WINDEX ) = LAMBDA+SIGMA
  993: *                    Recompute the gaps on the left and right
  994: *                    But only allow them to become larger and not
  995: *                    smaller (which can only happen through "bad"
  996: *                    cancellation and doesn't reflect the theory
  997: *                    where the initial gaps are underestimated due
  998: *                    to WERR being too crude.)
  999:                      IF(.NOT.ESKIP) THEN
 1000:                         IF( K.GT.1) THEN
 1001:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
 1002:      $                          W(WINDEX)-WERR(WINDEX)
 1003:      $                          - W(WINDMN)-WERR(WINDMN) )
 1004:                         ENDIF
 1005:                         IF( WINDEX.LT.WEND ) THEN
 1006:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1007:      $                          W( WINDPL )-WERR( WINDPL )
 1008:      $                          - W( WINDEX )-WERR( WINDEX) )
 1009:                         ENDIF
 1010:                      ENDIF
 1011:                      IDONE = IDONE + 1
 1012:                   ENDIF
 1013: *                 here ends the code for the current child
 1014: *
 1015:  139              CONTINUE
 1016: *                 Proceed to any remaining child nodes
 1017:                   NEWFST = J + 1
 1018:  140           CONTINUE
 1019:  150        CONTINUE
 1020:             NDEPTH = NDEPTH + 1
 1021:             GO TO 40
 1022:          END IF
 1023:          IBEGIN = IEND + 1
 1024:          WBEGIN = WEND + 1
 1025:  170  CONTINUE
 1026: *
 1027: 
 1028:       RETURN
 1029: *
 1030: *     End of DLARRV
 1031: *
 1032:       END

CVSweb interface <joel.bertrand@systella.fr>