File:  [local] / rpl / lapack / lapack / dlarrv.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:25 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLARRV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26:    27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       DOUBLE PRECISION  Z( LDZ, * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *> \endverbatim
   63: *>
   64: *> \param[in] VU
   65: *> \verbatim
   66: *>          VU is DOUBLE PRECISION
   67: *>          Lower and upper bounds of the interval that contains the desired
   68: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   69: *>          end of the extremal eigenvalues in the desired RANGE.
   70: *> \endverbatim
   71: *>
   72: *> \param[in,out] D
   73: *> \verbatim
   74: *>          D is DOUBLE PRECISION array, dimension (N)
   75: *>          On entry, the N diagonal elements of the diagonal matrix D.
   76: *>          On exit, D may be overwritten.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] L
   80: *> \verbatim
   81: *>          L is DOUBLE PRECISION array, dimension (N)
   82: *>          On entry, the (N-1) subdiagonal elements of the unit
   83: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   84: *>          (if the matrix is not splitted.) At the end of each block
   85: *>          is stored the corresponding shift as given by DLARRE.
   86: *>          On exit, L is overwritten.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] PIVMIN
   90: *> \verbatim
   91: *>          PIVMIN is DOUBLE PRECISION
   92: *>          The minimum pivot allowed in the Sturm sequence.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] ISPLIT
   96: *> \verbatim
   97: *>          ISPLIT is INTEGER array, dimension (N)
   98: *>          The splitting points, at which T breaks up into blocks.
   99: *>          The first block consists of rows/columns 1 to
  100: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  101: *>          through ISPLIT( 2 ), etc.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] M
  105: *> \verbatim
  106: *>          M is INTEGER
  107: *>          The total number of input eigenvalues.  0 <= M <= N.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] DOL
  111: *> \verbatim
  112: *>          DOL is INTEGER
  113: *> \endverbatim
  114: *>
  115: *> \param[in] DOU
  116: *> \verbatim
  117: *>          DOU is INTEGER
  118: *>          If the user wants to compute only selected eigenvectors from all
  119: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  120: *>          Or else the setting DOL=1, DOU=M should be applied.
  121: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  122: *>          are stored in W.
  123: *>          If the user wants to compute only selected eigenpairs, then
  124: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  125: *>          computed eigenvectors. All other columns of Z are set to zero.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] MINRGP
  129: *> \verbatim
  130: *>          MINRGP is DOUBLE PRECISION
  131: *> \endverbatim
  132: *>
  133: *> \param[in] RTOL1
  134: *> \verbatim
  135: *>          RTOL1 is DOUBLE PRECISION
  136: *> \endverbatim
  137: *>
  138: *> \param[in] RTOL2
  139: *> \verbatim
  140: *>          RTOL2 is DOUBLE PRECISION
  141: *>           Parameters for bisection.
  142: *>           An interval [LEFT,RIGHT] has converged if
  143: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  144: *> \endverbatim
  145: *>
  146: *> \param[in,out] W
  147: *> \verbatim
  148: *>          W is DOUBLE PRECISION array, dimension (N)
  149: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  150: *>          which eigenvectors are to be computed.  The eigenvalues
  151: *>          should be grouped by split-off block and ordered from
  152: *>          smallest to largest within the block ( The output array
  153: *>          W from DLARRE is expected here ). Furthermore, they are with
  154: *>          respect to the shift of the corresponding root representation
  155: *>          for their block. On exit, W holds the eigenvalues of the
  156: *>          UNshifted matrix.
  157: *> \endverbatim
  158: *>
  159: *> \param[in,out] WERR
  160: *> \verbatim
  161: *>          WERR is DOUBLE PRECISION array, dimension (N)
  162: *>          The first M elements contain the semiwidth of the uncertainty
  163: *>          interval of the corresponding eigenvalue in W
  164: *> \endverbatim
  165: *>
  166: *> \param[in,out] WGAP
  167: *> \verbatim
  168: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  169: *>          The separation from the right neighbor eigenvalue in W.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] IBLOCK
  173: *> \verbatim
  174: *>          IBLOCK is INTEGER array, dimension (N)
  175: *>          The indices of the blocks (submatrices) associated with the
  176: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  177: *>          W(i) belongs to the first block from the top, =2 if W(i)
  178: *>          belongs to the second block, etc.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] INDEXW
  182: *> \verbatim
  183: *>          INDEXW is INTEGER array, dimension (N)
  184: *>          The indices of the eigenvalues within each block (submatrix);
  185: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  186: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] GERS
  190: *> \verbatim
  191: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  192: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  193: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  194: *>          be computed from the original UNshifted matrix.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] Z
  198: *> \verbatim
  199: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  200: *>          If INFO = 0, the first M columns of Z contain the
  201: *>          orthonormal eigenvectors of the matrix T
  202: *>          corresponding to the input eigenvalues, with the i-th
  203: *>          column of Z holding the eigenvector associated with W(i).
  204: *>          Note: the user must ensure that at least max(1,M) columns are
  205: *>          supplied in the array Z.
  206: *> \endverbatim
  207: *>
  208: *> \param[in] LDZ
  209: *> \verbatim
  210: *>          LDZ is INTEGER
  211: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  212: *>          JOBZ = 'V', LDZ >= max(1,N).
  213: *> \endverbatim
  214: *>
  215: *> \param[out] ISUPPZ
  216: *> \verbatim
  217: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  218: *>          The support of the eigenvectors in Z, i.e., the indices
  219: *>          indicating the nonzero elements in Z. The I-th eigenvector
  220: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  221: *>          ISUPPZ( 2*I ).
  222: *> \endverbatim
  223: *>
  224: *> \param[out] WORK
  225: *> \verbatim
  226: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] IWORK
  230: *> \verbatim
  231: *>          IWORK is INTEGER array, dimension (7*N)
  232: *> \endverbatim
  233: *>
  234: *> \param[out] INFO
  235: *> \verbatim
  236: *>          INFO is INTEGER
  237: *>          = 0:  successful exit
  238: *>
  239: *>          > 0:  A problem occured in DLARRV.
  240: *>          < 0:  One of the called subroutines signaled an internal problem.
  241: *>                Needs inspection of the corresponding parameter IINFO
  242: *>                for further information.
  243: *>
  244: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  245: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  246: *>                When a child is inside a tight cluster, it can be difficult
  247: *>                to find an RRR. A partial remedy from the user's point of
  248: *>                view is to make the parameter MINRGP smaller and recompile.
  249: *>                However, as the orthogonality of the computed vectors is
  250: *>                proportional to 1/MINRGP, the user should be aware that
  251: *>                he might be trading in precision when he decreases MINRGP.
  252: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  253: *>                after the Rayleigh correction was rejected.
  254: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  255: *>                full accuracy in MAXITR steps.
  256: *> \endverbatim
  257: *
  258: *  Authors:
  259: *  ========
  260: *
  261: *> \author Univ. of Tennessee 
  262: *> \author Univ. of California Berkeley 
  263: *> \author Univ. of Colorado Denver 
  264: *> \author NAG Ltd. 
  265: *
  266: *> \date September 2012
  267: *
  268: *> \ingroup doubleOTHERauxiliary
  269: *
  270: *> \par Contributors:
  271: *  ==================
  272: *>
  273: *> Beresford Parlett, University of California, Berkeley, USA \n
  274: *> Jim Demmel, University of California, Berkeley, USA \n
  275: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  276: *> Osni Marques, LBNL/NERSC, USA \n
  277: *> Christof Voemel, University of California, Berkeley, USA
  278: *
  279: *  =====================================================================
  280:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
  281:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  282:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  283:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  284:      $                   WORK, IWORK, INFO )
  285: *
  286: *  -- LAPACK auxiliary routine (version 3.4.2) --
  287: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  288: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  289: *     September 2012
  290: *
  291: *     .. Scalar Arguments ..
  292:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  293:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  294: *     ..
  295: *     .. Array Arguments ..
  296:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  297:      $                   ISUPPZ( * ), IWORK( * )
  298:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  299:      $                   WGAP( * ), WORK( * )
  300:       DOUBLE PRECISION  Z( LDZ, * )
  301: *     ..
  302: *
  303: *  =====================================================================
  304: *
  305: *     .. Parameters ..
  306:       INTEGER            MAXITR
  307:       PARAMETER          ( MAXITR = 10 )
  308:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  309:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  310:      $                     TWO = 2.0D0, THREE = 3.0D0,
  311:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  312: *     ..
  313: *     .. Local Scalars ..
  314:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  315:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  316:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  317:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  318:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  319:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  320:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  321:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  322:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  323:      $                   ZUSEDW
  324:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  325:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  326:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  327:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  328: *     ..
  329: *     .. External Functions ..
  330:       DOUBLE PRECISION   DLAMCH
  331:       EXTERNAL           DLAMCH
  332: *     ..
  333: *     .. External Subroutines ..
  334:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
  335:      $                   DSCAL
  336: *     ..
  337: *     .. Intrinsic Functions ..
  338:       INTRINSIC ABS, DBLE, MAX, MIN
  339: *     ..
  340: *     .. Executable Statements ..
  341: *     ..
  342: 
  343: *     The first N entries of WORK are reserved for the eigenvalues
  344:       INDLD = N+1
  345:       INDLLD= 2*N+1
  346:       INDWRK= 3*N+1
  347:       MINWSIZE = 12 * N
  348: 
  349:       DO 5 I= 1,MINWSIZE
  350:          WORK( I ) = ZERO
  351:  5    CONTINUE
  352: 
  353: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  354: *     factorization used to compute the FP vector
  355:       IINDR = 0
  356: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  357: *     layer and the one above.
  358:       IINDC1 = N
  359:       IINDC2 = 2*N
  360:       IINDWK = 3*N + 1
  361: 
  362:       MINIWSIZE = 7 * N
  363:       DO 10 I= 1,MINIWSIZE
  364:          IWORK( I ) = 0
  365:  10   CONTINUE
  366: 
  367:       ZUSEDL = 1
  368:       IF(DOL.GT.1) THEN
  369: *        Set lower bound for use of Z
  370:          ZUSEDL = DOL-1
  371:       ENDIF
  372:       ZUSEDU = M
  373:       IF(DOU.LT.M) THEN
  374: *        Set lower bound for use of Z
  375:          ZUSEDU = DOU+1
  376:       ENDIF
  377: *     The width of the part of Z that is used
  378:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  379: 
  380: 
  381:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
  382:      $                    Z(1,ZUSEDL), LDZ )
  383: 
  384:       EPS = DLAMCH( 'Precision' )
  385:       RQTOL = TWO * EPS
  386: *
  387: *     Set expert flags for standard code.
  388:       TRYRQC = .TRUE.
  389: 
  390:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  391:       ELSE
  392: *        Only selected eigenpairs are computed. Since the other evalues
  393: *        are not refined by RQ iteration, bisection has to compute to full
  394: *        accuracy.
  395:          RTOL1 = FOUR * EPS
  396:          RTOL2 = FOUR * EPS
  397:       ENDIF
  398: 
  399: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  400: *     desired eigenvalues. The support of the nonzero eigenvector
  401: *     entries is contained in the interval IBEGIN:IEND.
  402: *     Remark that if k eigenpairs are desired, then the eigenvectors
  403: *     are stored in k contiguous columns of Z.
  404: 
  405: *     DONE is the number of eigenvectors already computed
  406:       DONE = 0
  407:       IBEGIN = 1
  408:       WBEGIN = 1
  409:       DO 170 JBLK = 1, IBLOCK( M )
  410:          IEND = ISPLIT( JBLK )
  411:          SIGMA = L( IEND )
  412: *        Find the eigenvectors of the submatrix indexed IBEGIN
  413: *        through IEND.
  414:          WEND = WBEGIN - 1
  415:  15      CONTINUE
  416:          IF( WEND.LT.M ) THEN
  417:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  418:                WEND = WEND + 1
  419:                GO TO 15
  420:             END IF
  421:          END IF
  422:          IF( WEND.LT.WBEGIN ) THEN
  423:             IBEGIN = IEND + 1
  424:             GO TO 170
  425:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  426:             IBEGIN = IEND + 1
  427:             WBEGIN = WEND + 1
  428:             GO TO 170
  429:          END IF
  430: 
  431: *        Find local spectral diameter of the block
  432:          GL = GERS( 2*IBEGIN-1 )
  433:          GU = GERS( 2*IBEGIN )
  434:          DO 20 I = IBEGIN+1 , IEND
  435:             GL = MIN( GERS( 2*I-1 ), GL )
  436:             GU = MAX( GERS( 2*I ), GU )
  437:  20      CONTINUE
  438:          SPDIAM = GU - GL
  439: 
  440: *        OLDIEN is the last index of the previous block
  441:          OLDIEN = IBEGIN - 1
  442: *        Calculate the size of the current block
  443:          IN = IEND - IBEGIN + 1
  444: *        The number of eigenvalues in the current block
  445:          IM = WEND - WBEGIN + 1
  446: 
  447: *        This is for a 1x1 block
  448:          IF( IBEGIN.EQ.IEND ) THEN
  449:             DONE = DONE+1
  450:             Z( IBEGIN, WBEGIN ) = ONE
  451:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  452:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  453:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  454:             WORK( WBEGIN ) = W( WBEGIN )
  455:             IBEGIN = IEND + 1
  456:             WBEGIN = WBEGIN + 1
  457:             GO TO 170
  458:          END IF
  459: 
  460: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  461: *        Note that these can be approximations, in this case, the corresp.
  462: *        entries of WERR give the size of the uncertainty interval.
  463: *        The eigenvalue approximations will be refined when necessary as
  464: *        high relative accuracy is required for the computation of the
  465: *        corresponding eigenvectors.
  466:          CALL DCOPY( IM, W( WBEGIN ), 1,
  467:      $                   WORK( WBEGIN ), 1 )
  468: 
  469: *        We store in W the eigenvalue approximations w.r.t. the original
  470: *        matrix T.
  471:          DO 30 I=1,IM
  472:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  473:  30      CONTINUE
  474: 
  475: 
  476: *        NDEPTH is the current depth of the representation tree
  477:          NDEPTH = 0
  478: *        PARITY is either 1 or 0
  479:          PARITY = 1
  480: *        NCLUS is the number of clusters for the next level of the
  481: *        representation tree, we start with NCLUS = 1 for the root
  482:          NCLUS = 1
  483:          IWORK( IINDC1+1 ) = 1
  484:          IWORK( IINDC1+2 ) = IM
  485: 
  486: *        IDONE is the number of eigenvectors already computed in the current
  487: *        block
  488:          IDONE = 0
  489: *        loop while( IDONE.LT.IM )
  490: *        generate the representation tree for the current block and
  491: *        compute the eigenvectors
  492:    40    CONTINUE
  493:          IF( IDONE.LT.IM ) THEN
  494: *           This is a crude protection against infinitely deep trees
  495:             IF( NDEPTH.GT.M ) THEN
  496:                INFO = -2
  497:                RETURN
  498:             ENDIF
  499: *           breadth first processing of the current level of the representation
  500: *           tree: OLDNCL = number of clusters on current level
  501:             OLDNCL = NCLUS
  502: *           reset NCLUS to count the number of child clusters
  503:             NCLUS = 0
  504: *
  505:             PARITY = 1 - PARITY
  506:             IF( PARITY.EQ.0 ) THEN
  507:                OLDCLS = IINDC1
  508:                NEWCLS = IINDC2
  509:             ELSE
  510:                OLDCLS = IINDC2
  511:                NEWCLS = IINDC1
  512:             END IF
  513: *           Process the clusters on the current level
  514:             DO 150 I = 1, OLDNCL
  515:                J = OLDCLS + 2*I
  516: *              OLDFST, OLDLST = first, last index of current cluster.
  517: *                               cluster indices start with 1 and are relative
  518: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  519:                OLDFST = IWORK( J-1 )
  520:                OLDLST = IWORK( J )
  521:                IF( NDEPTH.GT.0 ) THEN
  522: *                 Retrieve relatively robust representation (RRR) of cluster
  523: *                 that has been computed at the previous level
  524: *                 The RRR is stored in Z and overwritten once the eigenvectors
  525: *                 have been computed or when the cluster is refined
  526: 
  527:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  528: *                    Get representation from location of the leftmost evalue
  529: *                    of the cluster
  530:                      J = WBEGIN + OLDFST - 1
  531:                   ELSE
  532:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  533: *                       Get representation from the left end of Z array
  534:                         J = DOL - 1
  535:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  536: *                       Get representation from the right end of Z array
  537:                         J = DOU
  538:                      ELSE
  539:                         J = WBEGIN + OLDFST - 1
  540:                      ENDIF
  541:                   ENDIF
  542:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
  543:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
  544:      $               1 )
  545:                   SIGMA = Z( IEND, J+1 )
  546: 
  547: *                 Set the corresponding entries in Z to zero
  548:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
  549:      $                         Z( IBEGIN, J), LDZ )
  550:                END IF
  551: 
  552: *              Compute DL and DLL of current RRR
  553:                DO 50 J = IBEGIN, IEND-1
  554:                   TMP = D( J )*L( J )
  555:                   WORK( INDLD-1+J ) = TMP
  556:                   WORK( INDLLD-1+J ) = TMP*L( J )
  557:    50          CONTINUE
  558: 
  559:                IF( NDEPTH.GT.0 ) THEN
  560: *                 P and Q are index of the first and last eigenvalue to compute
  561: *                 within the current block
  562:                   P = INDEXW( WBEGIN-1+OLDFST )
  563:                   Q = INDEXW( WBEGIN-1+OLDLST )
  564: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  565: *                 through the Q-OFFSET elements of these arrays are to be used.
  566: *                  OFFSET = P-OLDFST
  567:                   OFFSET = INDEXW( WBEGIN ) - 1
  568: *                 perform limited bisection (if necessary) to get approximate
  569: *                 eigenvalues to the precision needed.
  570:                   CALL DLARRB( IN, D( IBEGIN ),
  571:      $                         WORK(INDLLD+IBEGIN-1),
  572:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  573:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  574:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  575:      $                         PIVMIN, SPDIAM, IN, IINFO )
  576:                   IF( IINFO.NE.0 ) THEN
  577:                      INFO = -1
  578:                      RETURN
  579:                   ENDIF
  580: *                 We also recompute the extremal gaps. W holds all eigenvalues
  581: *                 of the unshifted matrix and must be used for computation
  582: *                 of WGAP, the entries of WORK might stem from RRRs with
  583: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  584: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  585: *                 However, we only allow the gaps to become greater since
  586: *                 this is what should happen when we decrease WERR
  587:                   IF( OLDFST.GT.1) THEN
  588:                      WGAP( WBEGIN+OLDFST-2 ) =
  589:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  590:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  591:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  592:                   ENDIF
  593:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  594:                      WGAP( WBEGIN+OLDLST-1 ) =
  595:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  596:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  597:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  598:                   ENDIF
  599: *                 Each time the eigenvalues in WORK get refined, we store
  600: *                 the newly found approximation with all shifts applied in W
  601:                   DO 53 J=OLDFST,OLDLST
  602:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  603:  53               CONTINUE
  604:                END IF
  605: 
  606: *              Process the current node.
  607:                NEWFST = OLDFST
  608:                DO 140 J = OLDFST, OLDLST
  609:                   IF( J.EQ.OLDLST ) THEN
  610: *                    we are at the right end of the cluster, this is also the
  611: *                    boundary of the child cluster
  612:                      NEWLST = J
  613:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  614:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  615: *                    the right relative gap is big enough, the child cluster
  616: *                    (NEWFST,..,NEWLST) is well separated from the following
  617:                      NEWLST = J
  618:                    ELSE
  619: *                    inside a child cluster, the relative gap is not
  620: *                    big enough.
  621:                      GOTO 140
  622:                   END IF
  623: 
  624: *                 Compute size of child cluster found
  625:                   NEWSIZ = NEWLST - NEWFST + 1
  626: 
  627: *                 NEWFTT is the place in Z where the new RRR or the computed
  628: *                 eigenvector is to be stored
  629:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  630: *                    Store representation at location of the leftmost evalue
  631: *                    of the cluster
  632:                      NEWFTT = WBEGIN + NEWFST - 1
  633:                   ELSE
  634:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  635: *                       Store representation at the left end of Z array
  636:                         NEWFTT = DOL - 1
  637:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  638: *                       Store representation at the right end of Z array
  639:                         NEWFTT = DOU
  640:                      ELSE
  641:                         NEWFTT = WBEGIN + NEWFST - 1
  642:                      ENDIF
  643:                   ENDIF
  644: 
  645:                   IF( NEWSIZ.GT.1) THEN
  646: *
  647: *                    Current child is not a singleton but a cluster.
  648: *                    Compute and store new representation of child.
  649: *
  650: *
  651: *                    Compute left and right cluster gap.
  652: *
  653: *                    LGAP and RGAP are not computed from WORK because
  654: *                    the eigenvalue approximations may stem from RRRs
  655: *                    different shifts. However, W hold all eigenvalues
  656: *                    of the unshifted matrix. Still, the entries in WGAP
  657: *                    have to be computed from WORK since the entries
  658: *                    in W might be of the same order so that gaps are not
  659: *                    exhibited correctly for very close eigenvalues.
  660:                      IF( NEWFST.EQ.1 ) THEN
  661:                         LGAP = MAX( ZERO,
  662:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  663:                     ELSE
  664:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  665:                      ENDIF
  666:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  667: *
  668: *                    Compute left- and rightmost eigenvalue of child
  669: *                    to high precision in order to shift as close
  670: *                    as possible and obtain as large relative gaps
  671: *                    as possible
  672: *
  673:                      DO 55 K =1,2
  674:                         IF(K.EQ.1) THEN
  675:                            P = INDEXW( WBEGIN-1+NEWFST )
  676:                         ELSE
  677:                            P = INDEXW( WBEGIN-1+NEWLST )
  678:                         ENDIF
  679:                         OFFSET = INDEXW( WBEGIN ) - 1
  680:                         CALL DLARRB( IN, D(IBEGIN),
  681:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  682:      $                       RQTOL, RQTOL, OFFSET,
  683:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  684:      $                       WERR(WBEGIN),WORK( INDWRK ),
  685:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  686:      $                       IN, IINFO )
  687:  55                  CONTINUE
  688: *
  689:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  690:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  691: *                       if the cluster contains no desired eigenvalues
  692: *                       skip the computation of that branch of the rep. tree
  693: *
  694: *                       We could skip before the refinement of the extremal
  695: *                       eigenvalues of the child, but then the representation
  696: *                       tree could be different from the one when nothing is
  697: *                       skipped. For this reason we skip at this place.
  698:                         IDONE = IDONE + NEWLST - NEWFST + 1
  699:                         GOTO 139
  700:                      ENDIF
  701: *
  702: *                    Compute RRR of child cluster.
  703: *                    Note that the new RRR is stored in Z
  704: *
  705: *                    DLARRF needs LWORK = 2*N
  706:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  707:      $                         WORK(INDLD+IBEGIN-1),
  708:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  709:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  710:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  711:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
  712:      $                         WORK( INDWRK ), IINFO )
  713:                      IF( IINFO.EQ.0 ) THEN
  714: *                       a new RRR for the cluster was found by DLARRF
  715: *                       update shift and store it
  716:                         SSIGMA = SIGMA + TAU
  717:                         Z( IEND, NEWFTT+1 ) = SSIGMA
  718: *                       WORK() are the midpoints and WERR() the semi-width
  719: *                       Note that the entries in W are unchanged.
  720:                         DO 116 K = NEWFST, NEWLST
  721:                            FUDGE =
  722:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  723:                            WORK( WBEGIN + K - 1 ) =
  724:      $                          WORK( WBEGIN + K - 1) - TAU
  725:                            FUDGE = FUDGE +
  726:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  727: *                          Fudge errors
  728:                            WERR( WBEGIN + K - 1 ) =
  729:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  730: *                          Gaps are not fudged. Provided that WERR is small
  731: *                          when eigenvalues are close, a zero gap indicates
  732: *                          that a new representation is needed for resolving
  733: *                          the cluster. A fudge could lead to a wrong decision
  734: *                          of judging eigenvalues 'separated' which in
  735: *                          reality are not. This could have a negative impact
  736: *                          on the orthogonality of the computed eigenvectors.
  737:  116                    CONTINUE
  738: 
  739:                         NCLUS = NCLUS + 1
  740:                         K = NEWCLS + 2*NCLUS
  741:                         IWORK( K-1 ) = NEWFST
  742:                         IWORK( K ) = NEWLST
  743:                      ELSE
  744:                         INFO = -2
  745:                         RETURN
  746:                      ENDIF
  747:                   ELSE
  748: *
  749: *                    Compute eigenvector of singleton
  750: *
  751:                      ITER = 0
  752: *
  753:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  754: *
  755:                      K = NEWFST
  756:                      WINDEX = WBEGIN + K - 1
  757:                      WINDMN = MAX(WINDEX - 1,1)
  758:                      WINDPL = MIN(WINDEX + 1,M)
  759:                      LAMBDA = WORK( WINDEX )
  760:                      DONE = DONE + 1
  761: *                    Check if eigenvector computation is to be skipped
  762:                      IF((WINDEX.LT.DOL).OR.
  763:      $                  (WINDEX.GT.DOU)) THEN
  764:                         ESKIP = .TRUE.
  765:                         GOTO 125
  766:                      ELSE
  767:                         ESKIP = .FALSE.
  768:                      ENDIF
  769:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  770:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  771:                      INDEIG = INDEXW( WINDEX )
  772: *                    Note that since we compute the eigenpairs for a child,
  773: *                    all eigenvalue approximations are w.r.t the same shift.
  774: *                    In this case, the entries in WORK should be used for
  775: *                    computing the gaps since they exhibit even very small
  776: *                    differences in the eigenvalues, as opposed to the
  777: *                    entries in W which might "look" the same.
  778: 
  779:                      IF( K .EQ. 1) THEN
  780: *                       In the case RANGE='I' and with not much initial
  781: *                       accuracy in LAMBDA and VL, the formula
  782: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  783: *                       can lead to an overestimation of the left gap and
  784: *                       thus to inadequately early RQI 'convergence'.
  785: *                       Prevent this by forcing a small left gap.
  786:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  787:                      ELSE
  788:                         LGAP = WGAP(WINDMN)
  789:                      ENDIF
  790:                      IF( K .EQ. IM) THEN
  791: *                       In the case RANGE='I' and with not much initial
  792: *                       accuracy in LAMBDA and VU, the formula
  793: *                       can lead to an overestimation of the right gap and
  794: *                       thus to inadequately early RQI 'convergence'.
  795: *                       Prevent this by forcing a small right gap.
  796:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  797:                      ELSE
  798:                         RGAP = WGAP(WINDEX)
  799:                      ENDIF
  800:                      GAP = MIN( LGAP, RGAP )
  801:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  802: *                       The eigenvector support can become wrong
  803: *                       because significant entries could be cut off due to a
  804: *                       large GAPTOL parameter in LAR1V. Prevent this.
  805:                         GAPTOL = ZERO
  806:                      ELSE
  807:                         GAPTOL = GAP * EPS
  808:                      ENDIF
  809:                      ISUPMN = IN
  810:                      ISUPMX = 1
  811: *                    Update WGAP so that it holds the minimum gap
  812: *                    to the left or the right. This is crucial in the
  813: *                    case where bisection is used to ensure that the
  814: *                    eigenvalue is refined up to the required precision.
  815: *                    The correct value is restored afterwards.
  816:                      SAVGAP = WGAP(WINDEX)
  817:                      WGAP(WINDEX) = GAP
  818: *                    We want to use the Rayleigh Quotient Correction
  819: *                    as often as possible since it converges quadratically
  820: *                    when we are close enough to the desired eigenvalue.
  821: *                    However, the Rayleigh Quotient can have the wrong sign
  822: *                    and lead us away from the desired eigenvalue. In this
  823: *                    case, the best we can do is to use bisection.
  824:                      USEDBS = .FALSE.
  825:                      USEDRQ = .FALSE.
  826: *                    Bisection is initially turned off unless it is forced
  827:                      NEEDBS =  .NOT.TRYRQC
  828:  120                 CONTINUE
  829: *                    Check if bisection should be used to refine eigenvalue
  830:                      IF(NEEDBS) THEN
  831: *                       Take the bisection as new iterate
  832:                         USEDBS = .TRUE.
  833:                         ITMP1 = IWORK( IINDR+WINDEX )
  834:                         OFFSET = INDEXW( WBEGIN ) - 1
  835:                         CALL DLARRB( IN, D(IBEGIN),
  836:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  837:      $                       ZERO, TWO*EPS, OFFSET,
  838:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  839:      $                       WERR(WBEGIN),WORK( INDWRK ),
  840:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  841:      $                       ITMP1, IINFO )
  842:                         IF( IINFO.NE.0 ) THEN
  843:                            INFO = -3
  844:                            RETURN
  845:                         ENDIF
  846:                         LAMBDA = WORK( WINDEX )
  847: *                       Reset twist index from inaccurate LAMBDA to
  848: *                       force computation of true MINGMA
  849:                         IWORK( IINDR+WINDEX ) = 0
  850:                      ENDIF
  851: *                    Given LAMBDA, compute the eigenvector.
  852:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  853:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  854:      $                    WORK(INDLLD+IBEGIN-1),
  855:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  856:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  857:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  858:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  859:                      IF(ITER .EQ. 0) THEN
  860:                         BSTRES = RESID
  861:                         BSTW = LAMBDA
  862:                      ELSEIF(RESID.LT.BSTRES) THEN
  863:                         BSTRES = RESID
  864:                         BSTW = LAMBDA
  865:                      ENDIF
  866:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  867:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  868:                      ITER = ITER + 1
  869: 
  870: *                    sin alpha <= |resid|/gap
  871: *                    Note that both the residual and the gap are
  872: *                    proportional to the matrix, so ||T|| doesn't play
  873: *                    a role in the quotient
  874: 
  875: *
  876: *                    Convergence test for Rayleigh-Quotient iteration
  877: *                    (omitted when Bisection has been used)
  878: *
  879:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  880:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  881:      $                    THEN
  882: *                       We need to check that the RQCORR update doesn't
  883: *                       move the eigenvalue away from the desired one and
  884: *                       towards a neighbor. -> protection with bisection
  885:                         IF(INDEIG.LE.NEGCNT) THEN
  886: *                          The wanted eigenvalue lies to the left
  887:                            SGNDEF = -ONE
  888:                         ELSE
  889: *                          The wanted eigenvalue lies to the right
  890:                            SGNDEF = ONE
  891:                         ENDIF
  892: *                       We only use the RQCORR if it improves the
  893: *                       the iterate reasonably.
  894:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  895:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  896:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  897:      $                       ) THEN
  898:                            USEDRQ = .TRUE.
  899: *                          Store new midpoint of bisection interval in WORK
  900:                            IF(SGNDEF.EQ.ONE) THEN
  901: *                             The current LAMBDA is on the left of the true
  902: *                             eigenvalue
  903:                               LEFT = LAMBDA
  904: *                             We prefer to assume that the error estimate
  905: *                             is correct. We could make the interval not
  906: *                             as a bracket but to be modified if the RQCORR
  907: *                             chooses to. In this case, the RIGHT side should
  908: *                             be modified as follows:
  909: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  910:                            ELSE
  911: *                             The current LAMBDA is on the right of the true
  912: *                             eigenvalue
  913:                               RIGHT = LAMBDA
  914: *                             See comment about assuming the error estimate is
  915: *                             correct above.
  916: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  917:                            ENDIF
  918:                            WORK( WINDEX ) =
  919:      $                       HALF * (RIGHT + LEFT)
  920: *                          Take RQCORR since it has the correct sign and
  921: *                          improves the iterate reasonably
  922:                            LAMBDA = LAMBDA + RQCORR
  923: *                          Update width of error interval
  924:                            WERR( WINDEX ) =
  925:      $                             HALF * (RIGHT-LEFT)
  926:                         ELSE
  927:                            NEEDBS = .TRUE.
  928:                         ENDIF
  929:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  930: *                             The eigenvalue is computed to bisection accuracy
  931: *                             compute eigenvector and stop
  932:                            USEDBS = .TRUE.
  933:                            GOTO 120
  934:                         ELSEIF( ITER.LT.MAXITR ) THEN
  935:                            GOTO 120
  936:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  937:                            NEEDBS = .TRUE.
  938:                            GOTO 120
  939:                         ELSE
  940:                            INFO = 5
  941:                            RETURN
  942:                         END IF
  943:                      ELSE
  944:                         STP2II = .FALSE.
  945:         IF(USEDRQ .AND. USEDBS .AND.
  946:      $                     BSTRES.LE.RESID) THEN
  947:                            LAMBDA = BSTW
  948:                            STP2II = .TRUE.
  949:                         ENDIF
  950:                         IF (STP2II) THEN
  951: *                          improve error angle by second step
  952:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
  953:      $                          D( IBEGIN ), L( IBEGIN ),
  954:      $                          WORK(INDLD+IBEGIN-1),
  955:      $                          WORK(INDLLD+IBEGIN-1),
  956:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  957:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  958:      $                          IWORK( IINDR+WINDEX ),
  959:      $                          ISUPPZ( 2*WINDEX-1 ),
  960:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  961:                         ENDIF
  962:                         WORK( WINDEX ) = LAMBDA
  963:                      END IF
  964: *
  965: *                    Compute FP-vector support w.r.t. whole matrix
  966: *
  967:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  968:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  969:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  970:                      ZTO = ISUPPZ( 2*WINDEX )
  971:                      ISUPMN = ISUPMN + OLDIEN
  972:                      ISUPMX = ISUPMX + OLDIEN
  973: *                    Ensure vector is ok if support in the RQI has changed
  974:                      IF(ISUPMN.LT.ZFROM) THEN
  975:                         DO 122 II = ISUPMN,ZFROM-1
  976:                            Z( II, WINDEX ) = ZERO
  977:  122                    CONTINUE
  978:                      ENDIF
  979:                      IF(ISUPMX.GT.ZTO) THEN
  980:                         DO 123 II = ZTO+1,ISUPMX
  981:                            Z( II, WINDEX ) = ZERO
  982:  123                    CONTINUE
  983:                      ENDIF
  984:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
  985:      $                       Z( ZFROM, WINDEX ), 1 )
  986:  125                 CONTINUE
  987: *                    Update W
  988:                      W( WINDEX ) = LAMBDA+SIGMA
  989: *                    Recompute the gaps on the left and right
  990: *                    But only allow them to become larger and not
  991: *                    smaller (which can only happen through "bad"
  992: *                    cancellation and doesn't reflect the theory
  993: *                    where the initial gaps are underestimated due
  994: *                    to WERR being too crude.)
  995:                      IF(.NOT.ESKIP) THEN
  996:                         IF( K.GT.1) THEN
  997:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
  998:      $                          W(WINDEX)-WERR(WINDEX)
  999:      $                          - W(WINDMN)-WERR(WINDMN) )
 1000:                         ENDIF
 1001:                         IF( WINDEX.LT.WEND ) THEN
 1002:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1003:      $                          W( WINDPL )-WERR( WINDPL )
 1004:      $                          - W( WINDEX )-WERR( WINDEX) )
 1005:                         ENDIF
 1006:                      ENDIF
 1007:                      IDONE = IDONE + 1
 1008:                   ENDIF
 1009: *                 here ends the code for the current child
 1010: *
 1011:  139              CONTINUE
 1012: *                 Proceed to any remaining child nodes
 1013:                   NEWFST = J + 1
 1014:  140           CONTINUE
 1015:  150        CONTINUE
 1016:             NDEPTH = NDEPTH + 1
 1017:             GO TO 40
 1018:          END IF
 1019:          IBEGIN = IEND + 1
 1020:          WBEGIN = WEND + 1
 1021:  170  CONTINUE
 1022: *
 1023: 
 1024:       RETURN
 1025: *
 1026: *     End of DLARRV
 1027: *
 1028:       END

CVSweb interface <joel.bertrand@systella.fr>