Annotation of rpl/lapack/lapack/dlarrv.f, revision 1.13

1.13    ! bertrand    1: *> \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLARRV + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
                     22: *                          ISPLIT, M, DOL, DOU, MINRGP,
                     23: *                          RTOL1, RTOL2, W, WERR, WGAP,
                     24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
                     25: *                          WORK, IWORK, INFO )
                     26: * 
                     27: *       .. Scalar Arguments ..
                     28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
                     29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
                     33: *      $                   ISUPPZ( * ), IWORK( * )
                     34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
                     35: *      $                   WGAP( * ), WORK( * )
                     36: *       DOUBLE PRECISION  Z( LDZ, * )
                     37: *       ..
                     38: *  
                     39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> DLARRV computes the eigenvectors of the tridiagonal matrix
                     46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
                     47: *> The input eigenvalues should have been computed by DLARRE.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The order of the matrix.  N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] VL
                     60: *> \verbatim
                     61: *>          VL is DOUBLE PRECISION
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] VU
                     65: *> \verbatim
                     66: *>          VU is DOUBLE PRECISION
                     67: *>          Lower and upper bounds of the interval that contains the desired
                     68: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
                     69: *>          end of the extremal eigenvalues in the desired RANGE.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in,out] D
                     73: *> \verbatim
                     74: *>          D is DOUBLE PRECISION array, dimension (N)
                     75: *>          On entry, the N diagonal elements of the diagonal matrix D.
                     76: *>          On exit, D may be overwritten.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] L
                     80: *> \verbatim
                     81: *>          L is DOUBLE PRECISION array, dimension (N)
                     82: *>          On entry, the (N-1) subdiagonal elements of the unit
                     83: *>          bidiagonal matrix L are in elements 1 to N-1 of L
                     84: *>          (if the matrix is not splitted.) At the end of each block
                     85: *>          is stored the corresponding shift as given by DLARRE.
                     86: *>          On exit, L is overwritten.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] PIVMIN
                     90: *> \verbatim
                     91: *>          PIVMIN is DOUBLE PRECISION
                     92: *>          The minimum pivot allowed in the Sturm sequence.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] ISPLIT
                     96: *> \verbatim
                     97: *>          ISPLIT is INTEGER array, dimension (N)
                     98: *>          The splitting points, at which T breaks up into blocks.
                     99: *>          The first block consists of rows/columns 1 to
                    100: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
                    101: *>          through ISPLIT( 2 ), etc.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] M
                    105: *> \verbatim
                    106: *>          M is INTEGER
                    107: *>          The total number of input eigenvalues.  0 <= M <= N.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] DOL
                    111: *> \verbatim
                    112: *>          DOL is INTEGER
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] DOU
                    116: *> \verbatim
                    117: *>          DOU is INTEGER
                    118: *>          If the user wants to compute only selected eigenvectors from all
                    119: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
                    120: *>          Or else the setting DOL=1, DOU=M should be applied.
                    121: *>          Note that DOL and DOU refer to the order in which the eigenvalues
                    122: *>          are stored in W.
                    123: *>          If the user wants to compute only selected eigenpairs, then
                    124: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
                    125: *>          computed eigenvectors. All other columns of Z are set to zero.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] MINRGP
                    129: *> \verbatim
                    130: *>          MINRGP is DOUBLE PRECISION
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] RTOL1
                    134: *> \verbatim
                    135: *>          RTOL1 is DOUBLE PRECISION
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] RTOL2
                    139: *> \verbatim
                    140: *>          RTOL2 is DOUBLE PRECISION
                    141: *>           Parameters for bisection.
                    142: *>           An interval [LEFT,RIGHT] has converged if
                    143: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in,out] W
                    147: *> \verbatim
                    148: *>          W is DOUBLE PRECISION array, dimension (N)
                    149: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
                    150: *>          which eigenvectors are to be computed.  The eigenvalues
                    151: *>          should be grouped by split-off block and ordered from
                    152: *>          smallest to largest within the block ( The output array
                    153: *>          W from DLARRE is expected here ). Furthermore, they are with
                    154: *>          respect to the shift of the corresponding root representation
                    155: *>          for their block. On exit, W holds the eigenvalues of the
                    156: *>          UNshifted matrix.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in,out] WERR
                    160: *> \verbatim
                    161: *>          WERR is DOUBLE PRECISION array, dimension (N)
                    162: *>          The first M elements contain the semiwidth of the uncertainty
                    163: *>          interval of the corresponding eigenvalue in W
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in,out] WGAP
                    167: *> \verbatim
                    168: *>          WGAP is DOUBLE PRECISION array, dimension (N)
                    169: *>          The separation from the right neighbor eigenvalue in W.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] IBLOCK
                    173: *> \verbatim
                    174: *>          IBLOCK is INTEGER array, dimension (N)
                    175: *>          The indices of the blocks (submatrices) associated with the
                    176: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                    177: *>          W(i) belongs to the first block from the top, =2 if W(i)
                    178: *>          belongs to the second block, etc.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] INDEXW
                    182: *> \verbatim
                    183: *>          INDEXW is INTEGER array, dimension (N)
                    184: *>          The indices of the eigenvalues within each block (submatrix);
                    185: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                    186: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[in] GERS
                    190: *> \verbatim
                    191: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
                    192: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
                    193: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
                    194: *>          be computed from the original UNshifted matrix.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] Z
                    198: *> \verbatim
                    199: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
                    200: *>          If INFO = 0, the first M columns of Z contain the
                    201: *>          orthonormal eigenvectors of the matrix T
                    202: *>          corresponding to the input eigenvalues, with the i-th
                    203: *>          column of Z holding the eigenvector associated with W(i).
                    204: *>          Note: the user must ensure that at least max(1,M) columns are
                    205: *>          supplied in the array Z.
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[in] LDZ
                    209: *> \verbatim
                    210: *>          LDZ is INTEGER
                    211: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    212: *>          JOBZ = 'V', LDZ >= max(1,N).
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[out] ISUPPZ
                    216: *> \verbatim
                    217: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
                    218: *>          The support of the eigenvectors in Z, i.e., the indices
                    219: *>          indicating the nonzero elements in Z. The I-th eigenvector
                    220: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
                    221: *>          ISUPPZ( 2*I ).
                    222: *> \endverbatim
                    223: *>
                    224: *> \param[out] WORK
                    225: *> \verbatim
                    226: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] IWORK
                    230: *> \verbatim
                    231: *>          IWORK is INTEGER array, dimension (7*N)
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[out] INFO
                    235: *> \verbatim
                    236: *>          INFO is INTEGER
                    237: *>          = 0:  successful exit
                    238: *>
                    239: *>          > 0:  A problem occured in DLARRV.
                    240: *>          < 0:  One of the called subroutines signaled an internal problem.
                    241: *>                Needs inspection of the corresponding parameter IINFO
                    242: *>                for further information.
                    243: *>
                    244: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
                    245: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
                    246: *>                When a child is inside a tight cluster, it can be difficult
                    247: *>                to find an RRR. A partial remedy from the user's point of
                    248: *>                view is to make the parameter MINRGP smaller and recompile.
                    249: *>                However, as the orthogonality of the computed vectors is
                    250: *>                proportional to 1/MINRGP, the user should be aware that
                    251: *>                he might be trading in precision when he decreases MINRGP.
                    252: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
                    253: *>                after the Rayleigh correction was rejected.
                    254: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
                    255: *>                full accuracy in MAXITR steps.
                    256: *> \endverbatim
                    257: *
                    258: *  Authors:
                    259: *  ========
                    260: *
                    261: *> \author Univ. of Tennessee 
                    262: *> \author Univ. of California Berkeley 
                    263: *> \author Univ. of Colorado Denver 
                    264: *> \author NAG Ltd. 
                    265: *
1.13    ! bertrand  266: *> \date September 2012
1.10      bertrand  267: *
                    268: *> \ingroup doubleOTHERauxiliary
                    269: *
                    270: *> \par Contributors:
                    271: *  ==================
                    272: *>
                    273: *> Beresford Parlett, University of California, Berkeley, USA \n
                    274: *> Jim Demmel, University of California, Berkeley, USA \n
                    275: *> Inderjit Dhillon, University of Texas, Austin, USA \n
                    276: *> Osni Marques, LBNL/NERSC, USA \n
                    277: *> Christof Voemel, University of California, Berkeley, USA
                    278: *
                    279: *  =====================================================================
1.1       bertrand  280:       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN,
                    281:      $                   ISPLIT, M, DOL, DOU, MINRGP,
                    282:      $                   RTOL1, RTOL2, W, WERR, WGAP,
                    283:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
                    284:      $                   WORK, IWORK, INFO )
                    285: *
1.13    ! bertrand  286: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  287: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    288: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13    ! bertrand  289: *     September 2012
1.1       bertrand  290: *
                    291: *     .. Scalar Arguments ..
                    292:       INTEGER            DOL, DOU, INFO, LDZ, M, N
                    293:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
                    294: *     ..
                    295: *     .. Array Arguments ..
                    296:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
                    297:      $                   ISUPPZ( * ), IWORK( * )
                    298:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
                    299:      $                   WGAP( * ), WORK( * )
                    300:       DOUBLE PRECISION  Z( LDZ, * )
                    301: *     ..
                    302: *
                    303: *  =====================================================================
                    304: *
                    305: *     .. Parameters ..
                    306:       INTEGER            MAXITR
                    307:       PARAMETER          ( MAXITR = 10 )
                    308:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
                    309:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    310:      $                     TWO = 2.0D0, THREE = 3.0D0,
                    311:      $                     FOUR = 4.0D0, HALF = 0.5D0)
                    312: *     ..
                    313: *     .. Local Scalars ..
                    314:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
                    315:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
                    316:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
                    317:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
                    318:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
                    319:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
                    320:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
                    321:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
                    322:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
                    323:      $                   ZUSEDW
                    324:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
                    325:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
                    326:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
                    327:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
                    328: *     ..
                    329: *     .. External Functions ..
                    330:       DOUBLE PRECISION   DLAMCH
                    331:       EXTERNAL           DLAMCH
                    332: *     ..
                    333: *     .. External Subroutines ..
                    334:       EXTERNAL           DCOPY, DLAR1V, DLARRB, DLARRF, DLASET,
                    335:      $                   DSCAL
                    336: *     ..
                    337: *     .. Intrinsic Functions ..
                    338:       INTRINSIC ABS, DBLE, MAX, MIN
                    339: *     ..
                    340: *     .. Executable Statements ..
                    341: *     ..
                    342: 
                    343: *     The first N entries of WORK are reserved for the eigenvalues
                    344:       INDLD = N+1
                    345:       INDLLD= 2*N+1
                    346:       INDWRK= 3*N+1
                    347:       MINWSIZE = 12 * N
                    348: 
                    349:       DO 5 I= 1,MINWSIZE
                    350:          WORK( I ) = ZERO
                    351:  5    CONTINUE
                    352: 
                    353: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
                    354: *     factorization used to compute the FP vector
                    355:       IINDR = 0
                    356: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
                    357: *     layer and the one above.
                    358:       IINDC1 = N
                    359:       IINDC2 = 2*N
                    360:       IINDWK = 3*N + 1
                    361: 
                    362:       MINIWSIZE = 7 * N
                    363:       DO 10 I= 1,MINIWSIZE
                    364:          IWORK( I ) = 0
                    365:  10   CONTINUE
                    366: 
                    367:       ZUSEDL = 1
                    368:       IF(DOL.GT.1) THEN
                    369: *        Set lower bound for use of Z
                    370:          ZUSEDL = DOL-1
                    371:       ENDIF
                    372:       ZUSEDU = M
                    373:       IF(DOU.LT.M) THEN
                    374: *        Set lower bound for use of Z
                    375:          ZUSEDU = DOU+1
                    376:       ENDIF
                    377: *     The width of the part of Z that is used
                    378:       ZUSEDW = ZUSEDU - ZUSEDL + 1
                    379: 
                    380: 
                    381:       CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
                    382:      $                    Z(1,ZUSEDL), LDZ )
                    383: 
                    384:       EPS = DLAMCH( 'Precision' )
                    385:       RQTOL = TWO * EPS
                    386: *
                    387: *     Set expert flags for standard code.
                    388:       TRYRQC = .TRUE.
                    389: 
                    390:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    391:       ELSE
                    392: *        Only selected eigenpairs are computed. Since the other evalues
                    393: *        are not refined by RQ iteration, bisection has to compute to full
                    394: *        accuracy.
                    395:          RTOL1 = FOUR * EPS
                    396:          RTOL2 = FOUR * EPS
                    397:       ENDIF
                    398: 
                    399: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
                    400: *     desired eigenvalues. The support of the nonzero eigenvector
                    401: *     entries is contained in the interval IBEGIN:IEND.
                    402: *     Remark that if k eigenpairs are desired, then the eigenvectors
                    403: *     are stored in k contiguous columns of Z.
                    404: 
                    405: *     DONE is the number of eigenvectors already computed
                    406:       DONE = 0
                    407:       IBEGIN = 1
                    408:       WBEGIN = 1
                    409:       DO 170 JBLK = 1, IBLOCK( M )
                    410:          IEND = ISPLIT( JBLK )
                    411:          SIGMA = L( IEND )
                    412: *        Find the eigenvectors of the submatrix indexed IBEGIN
                    413: *        through IEND.
                    414:          WEND = WBEGIN - 1
                    415:  15      CONTINUE
                    416:          IF( WEND.LT.M ) THEN
                    417:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
                    418:                WEND = WEND + 1
                    419:                GO TO 15
                    420:             END IF
                    421:          END IF
                    422:          IF( WEND.LT.WBEGIN ) THEN
                    423:             IBEGIN = IEND + 1
                    424:             GO TO 170
                    425:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
                    426:             IBEGIN = IEND + 1
                    427:             WBEGIN = WEND + 1
                    428:             GO TO 170
                    429:          END IF
                    430: 
                    431: *        Find local spectral diameter of the block
                    432:          GL = GERS( 2*IBEGIN-1 )
                    433:          GU = GERS( 2*IBEGIN )
                    434:          DO 20 I = IBEGIN+1 , IEND
                    435:             GL = MIN( GERS( 2*I-1 ), GL )
                    436:             GU = MAX( GERS( 2*I ), GU )
                    437:  20      CONTINUE
                    438:          SPDIAM = GU - GL
                    439: 
                    440: *        OLDIEN is the last index of the previous block
                    441:          OLDIEN = IBEGIN - 1
                    442: *        Calculate the size of the current block
                    443:          IN = IEND - IBEGIN + 1
                    444: *        The number of eigenvalues in the current block
                    445:          IM = WEND - WBEGIN + 1
                    446: 
                    447: *        This is for a 1x1 block
                    448:          IF( IBEGIN.EQ.IEND ) THEN
                    449:             DONE = DONE+1
                    450:             Z( IBEGIN, WBEGIN ) = ONE
                    451:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
                    452:             ISUPPZ( 2*WBEGIN ) = IBEGIN
                    453:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
                    454:             WORK( WBEGIN ) = W( WBEGIN )
                    455:             IBEGIN = IEND + 1
                    456:             WBEGIN = WBEGIN + 1
                    457:             GO TO 170
                    458:          END IF
                    459: 
                    460: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
                    461: *        Note that these can be approximations, in this case, the corresp.
                    462: *        entries of WERR give the size of the uncertainty interval.
                    463: *        The eigenvalue approximations will be refined when necessary as
                    464: *        high relative accuracy is required for the computation of the
                    465: *        corresponding eigenvectors.
                    466:          CALL DCOPY( IM, W( WBEGIN ), 1,
1.9       bertrand  467:      $                   WORK( WBEGIN ), 1 )
1.1       bertrand  468: 
                    469: *        We store in W the eigenvalue approximations w.r.t. the original
                    470: *        matrix T.
                    471:          DO 30 I=1,IM
                    472:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
                    473:  30      CONTINUE
                    474: 
                    475: 
                    476: *        NDEPTH is the current depth of the representation tree
                    477:          NDEPTH = 0
                    478: *        PARITY is either 1 or 0
                    479:          PARITY = 1
                    480: *        NCLUS is the number of clusters for the next level of the
                    481: *        representation tree, we start with NCLUS = 1 for the root
                    482:          NCLUS = 1
                    483:          IWORK( IINDC1+1 ) = 1
                    484:          IWORK( IINDC1+2 ) = IM
                    485: 
                    486: *        IDONE is the number of eigenvectors already computed in the current
                    487: *        block
                    488:          IDONE = 0
                    489: *        loop while( IDONE.LT.IM )
                    490: *        generate the representation tree for the current block and
                    491: *        compute the eigenvectors
                    492:    40    CONTINUE
                    493:          IF( IDONE.LT.IM ) THEN
                    494: *           This is a crude protection against infinitely deep trees
                    495:             IF( NDEPTH.GT.M ) THEN
                    496:                INFO = -2
                    497:                RETURN
                    498:             ENDIF
                    499: *           breadth first processing of the current level of the representation
                    500: *           tree: OLDNCL = number of clusters on current level
                    501:             OLDNCL = NCLUS
                    502: *           reset NCLUS to count the number of child clusters
                    503:             NCLUS = 0
                    504: *
                    505:             PARITY = 1 - PARITY
                    506:             IF( PARITY.EQ.0 ) THEN
                    507:                OLDCLS = IINDC1
                    508:                NEWCLS = IINDC2
                    509:             ELSE
                    510:                OLDCLS = IINDC2
                    511:                NEWCLS = IINDC1
                    512:             END IF
                    513: *           Process the clusters on the current level
                    514:             DO 150 I = 1, OLDNCL
                    515:                J = OLDCLS + 2*I
                    516: *              OLDFST, OLDLST = first, last index of current cluster.
                    517: *                               cluster indices start with 1 and are relative
                    518: *                               to WBEGIN when accessing W, WGAP, WERR, Z
                    519:                OLDFST = IWORK( J-1 )
                    520:                OLDLST = IWORK( J )
                    521:                IF( NDEPTH.GT.0 ) THEN
                    522: *                 Retrieve relatively robust representation (RRR) of cluster
                    523: *                 that has been computed at the previous level
                    524: *                 The RRR is stored in Z and overwritten once the eigenvectors
                    525: *                 have been computed or when the cluster is refined
                    526: 
                    527:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    528: *                    Get representation from location of the leftmost evalue
                    529: *                    of the cluster
                    530:                      J = WBEGIN + OLDFST - 1
                    531:                   ELSE
                    532:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
                    533: *                       Get representation from the left end of Z array
                    534:                         J = DOL - 1
                    535:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
                    536: *                       Get representation from the right end of Z array
                    537:                         J = DOU
                    538:                      ELSE
                    539:                         J = WBEGIN + OLDFST - 1
                    540:                      ENDIF
                    541:                   ENDIF
                    542:                   CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 )
                    543:                   CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ),
                    544:      $               1 )
                    545:                   SIGMA = Z( IEND, J+1 )
                    546: 
                    547: *                 Set the corresponding entries in Z to zero
                    548:                   CALL DLASET( 'Full', IN, 2, ZERO, ZERO,
                    549:      $                         Z( IBEGIN, J), LDZ )
                    550:                END IF
                    551: 
                    552: *              Compute DL and DLL of current RRR
                    553:                DO 50 J = IBEGIN, IEND-1
                    554:                   TMP = D( J )*L( J )
                    555:                   WORK( INDLD-1+J ) = TMP
                    556:                   WORK( INDLLD-1+J ) = TMP*L( J )
                    557:    50          CONTINUE
                    558: 
                    559:                IF( NDEPTH.GT.0 ) THEN
                    560: *                 P and Q are index of the first and last eigenvalue to compute
                    561: *                 within the current block
                    562:                   P = INDEXW( WBEGIN-1+OLDFST )
                    563:                   Q = INDEXW( WBEGIN-1+OLDLST )
1.5       bertrand  564: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
                    565: *                 through the Q-OFFSET elements of these arrays are to be used.
1.9       bertrand  566: *                  OFFSET = P-OLDFST
1.1       bertrand  567:                   OFFSET = INDEXW( WBEGIN ) - 1
                    568: *                 perform limited bisection (if necessary) to get approximate
                    569: *                 eigenvalues to the precision needed.
                    570:                   CALL DLARRB( IN, D( IBEGIN ),
                    571:      $                         WORK(INDLLD+IBEGIN-1),
                    572:      $                         P, Q, RTOL1, RTOL2, OFFSET,
                    573:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
                    574:      $                         WORK( INDWRK ), IWORK( IINDWK ),
                    575:      $                         PIVMIN, SPDIAM, IN, IINFO )
                    576:                   IF( IINFO.NE.0 ) THEN
                    577:                      INFO = -1
                    578:                      RETURN
                    579:                   ENDIF
                    580: *                 We also recompute the extremal gaps. W holds all eigenvalues
                    581: *                 of the unshifted matrix and must be used for computation
                    582: *                 of WGAP, the entries of WORK might stem from RRRs with
                    583: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
                    584: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
                    585: *                 However, we only allow the gaps to become greater since
                    586: *                 this is what should happen when we decrease WERR
                    587:                   IF( OLDFST.GT.1) THEN
                    588:                      WGAP( WBEGIN+OLDFST-2 ) =
                    589:      $             MAX(WGAP(WBEGIN+OLDFST-2),
                    590:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
                    591:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
                    592:                   ENDIF
                    593:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
                    594:                      WGAP( WBEGIN+OLDLST-1 ) =
                    595:      $               MAX(WGAP(WBEGIN+OLDLST-1),
                    596:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
                    597:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
                    598:                   ENDIF
                    599: *                 Each time the eigenvalues in WORK get refined, we store
                    600: *                 the newly found approximation with all shifts applied in W
                    601:                   DO 53 J=OLDFST,OLDLST
                    602:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
                    603:  53               CONTINUE
                    604:                END IF
                    605: 
                    606: *              Process the current node.
                    607:                NEWFST = OLDFST
                    608:                DO 140 J = OLDFST, OLDLST
                    609:                   IF( J.EQ.OLDLST ) THEN
                    610: *                    we are at the right end of the cluster, this is also the
                    611: *                    boundary of the child cluster
                    612:                      NEWLST = J
                    613:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
                    614:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
                    615: *                    the right relative gap is big enough, the child cluster
                    616: *                    (NEWFST,..,NEWLST) is well separated from the following
                    617:                      NEWLST = J
                    618:                    ELSE
                    619: *                    inside a child cluster, the relative gap is not
                    620: *                    big enough.
                    621:                      GOTO 140
                    622:                   END IF
                    623: 
                    624: *                 Compute size of child cluster found
                    625:                   NEWSIZ = NEWLST - NEWFST + 1
                    626: 
                    627: *                 NEWFTT is the place in Z where the new RRR or the computed
                    628: *                 eigenvector is to be stored
                    629:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    630: *                    Store representation at location of the leftmost evalue
                    631: *                    of the cluster
                    632:                      NEWFTT = WBEGIN + NEWFST - 1
                    633:                   ELSE
                    634:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
                    635: *                       Store representation at the left end of Z array
                    636:                         NEWFTT = DOL - 1
                    637:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
                    638: *                       Store representation at the right end of Z array
                    639:                         NEWFTT = DOU
                    640:                      ELSE
                    641:                         NEWFTT = WBEGIN + NEWFST - 1
                    642:                      ENDIF
                    643:                   ENDIF
                    644: 
                    645:                   IF( NEWSIZ.GT.1) THEN
                    646: *
                    647: *                    Current child is not a singleton but a cluster.
                    648: *                    Compute and store new representation of child.
                    649: *
                    650: *
                    651: *                    Compute left and right cluster gap.
                    652: *
                    653: *                    LGAP and RGAP are not computed from WORK because
                    654: *                    the eigenvalue approximations may stem from RRRs
                    655: *                    different shifts. However, W hold all eigenvalues
                    656: *                    of the unshifted matrix. Still, the entries in WGAP
                    657: *                    have to be computed from WORK since the entries
                    658: *                    in W might be of the same order so that gaps are not
                    659: *                    exhibited correctly for very close eigenvalues.
                    660:                      IF( NEWFST.EQ.1 ) THEN
                    661:                         LGAP = MAX( ZERO,
                    662:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
                    663:                     ELSE
                    664:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
                    665:                      ENDIF
                    666:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
                    667: *
                    668: *                    Compute left- and rightmost eigenvalue of child
                    669: *                    to high precision in order to shift as close
                    670: *                    as possible and obtain as large relative gaps
                    671: *                    as possible
                    672: *
                    673:                      DO 55 K =1,2
                    674:                         IF(K.EQ.1) THEN
                    675:                            P = INDEXW( WBEGIN-1+NEWFST )
                    676:                         ELSE
                    677:                            P = INDEXW( WBEGIN-1+NEWLST )
                    678:                         ENDIF
                    679:                         OFFSET = INDEXW( WBEGIN ) - 1
                    680:                         CALL DLARRB( IN, D(IBEGIN),
                    681:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
                    682:      $                       RQTOL, RQTOL, OFFSET,
                    683:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    684:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    685:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    686:      $                       IN, IINFO )
                    687:  55                  CONTINUE
                    688: *
                    689:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
                    690:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
                    691: *                       if the cluster contains no desired eigenvalues
                    692: *                       skip the computation of that branch of the rep. tree
                    693: *
                    694: *                       We could skip before the refinement of the extremal
                    695: *                       eigenvalues of the child, but then the representation
                    696: *                       tree could be different from the one when nothing is
                    697: *                       skipped. For this reason we skip at this place.
                    698:                         IDONE = IDONE + NEWLST - NEWFST + 1
                    699:                         GOTO 139
                    700:                      ENDIF
                    701: *
                    702: *                    Compute RRR of child cluster.
                    703: *                    Note that the new RRR is stored in Z
                    704: *
1.9       bertrand  705: *                    DLARRF needs LWORK = 2*N
1.1       bertrand  706:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
                    707:      $                         WORK(INDLD+IBEGIN-1),
                    708:      $                         NEWFST, NEWLST, WORK(WBEGIN),
                    709:      $                         WGAP(WBEGIN), WERR(WBEGIN),
                    710:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
                    711:      $                         Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1),
                    712:      $                         WORK( INDWRK ), IINFO )
                    713:                      IF( IINFO.EQ.0 ) THEN
                    714: *                       a new RRR for the cluster was found by DLARRF
                    715: *                       update shift and store it
                    716:                         SSIGMA = SIGMA + TAU
                    717:                         Z( IEND, NEWFTT+1 ) = SSIGMA
                    718: *                       WORK() are the midpoints and WERR() the semi-width
                    719: *                       Note that the entries in W are unchanged.
                    720:                         DO 116 K = NEWFST, NEWLST
                    721:                            FUDGE =
                    722:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
                    723:                            WORK( WBEGIN + K - 1 ) =
                    724:      $                          WORK( WBEGIN + K - 1) - TAU
                    725:                            FUDGE = FUDGE +
                    726:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
                    727: *                          Fudge errors
                    728:                            WERR( WBEGIN + K - 1 ) =
                    729:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
                    730: *                          Gaps are not fudged. Provided that WERR is small
                    731: *                          when eigenvalues are close, a zero gap indicates
                    732: *                          that a new representation is needed for resolving
                    733: *                          the cluster. A fudge could lead to a wrong decision
                    734: *                          of judging eigenvalues 'separated' which in
                    735: *                          reality are not. This could have a negative impact
                    736: *                          on the orthogonality of the computed eigenvectors.
                    737:  116                    CONTINUE
                    738: 
                    739:                         NCLUS = NCLUS + 1
                    740:                         K = NEWCLS + 2*NCLUS
                    741:                         IWORK( K-1 ) = NEWFST
                    742:                         IWORK( K ) = NEWLST
                    743:                      ELSE
                    744:                         INFO = -2
                    745:                         RETURN
                    746:                      ENDIF
                    747:                   ELSE
                    748: *
                    749: *                    Compute eigenvector of singleton
                    750: *
                    751:                      ITER = 0
                    752: *
                    753:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
                    754: *
                    755:                      K = NEWFST
                    756:                      WINDEX = WBEGIN + K - 1
                    757:                      WINDMN = MAX(WINDEX - 1,1)
                    758:                      WINDPL = MIN(WINDEX + 1,M)
                    759:                      LAMBDA = WORK( WINDEX )
                    760:                      DONE = DONE + 1
                    761: *                    Check if eigenvector computation is to be skipped
                    762:                      IF((WINDEX.LT.DOL).OR.
                    763:      $                  (WINDEX.GT.DOU)) THEN
                    764:                         ESKIP = .TRUE.
                    765:                         GOTO 125
                    766:                      ELSE
                    767:                         ESKIP = .FALSE.
                    768:                      ENDIF
                    769:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
                    770:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
                    771:                      INDEIG = INDEXW( WINDEX )
                    772: *                    Note that since we compute the eigenpairs for a child,
                    773: *                    all eigenvalue approximations are w.r.t the same shift.
                    774: *                    In this case, the entries in WORK should be used for
                    775: *                    computing the gaps since they exhibit even very small
                    776: *                    differences in the eigenvalues, as opposed to the
                    777: *                    entries in W which might "look" the same.
                    778: 
                    779:                      IF( K .EQ. 1) THEN
                    780: *                       In the case RANGE='I' and with not much initial
                    781: *                       accuracy in LAMBDA and VL, the formula
                    782: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
                    783: *                       can lead to an overestimation of the left gap and
                    784: *                       thus to inadequately early RQI 'convergence'.
                    785: *                       Prevent this by forcing a small left gap.
                    786:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    787:                      ELSE
                    788:                         LGAP = WGAP(WINDMN)
                    789:                      ENDIF
                    790:                      IF( K .EQ. IM) THEN
                    791: *                       In the case RANGE='I' and with not much initial
                    792: *                       accuracy in LAMBDA and VU, the formula
                    793: *                       can lead to an overestimation of the right gap and
                    794: *                       thus to inadequately early RQI 'convergence'.
                    795: *                       Prevent this by forcing a small right gap.
                    796:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    797:                      ELSE
                    798:                         RGAP = WGAP(WINDEX)
                    799:                      ENDIF
                    800:                      GAP = MIN( LGAP, RGAP )
                    801:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
                    802: *                       The eigenvector support can become wrong
                    803: *                       because significant entries could be cut off due to a
                    804: *                       large GAPTOL parameter in LAR1V. Prevent this.
                    805:                         GAPTOL = ZERO
                    806:                      ELSE
                    807:                         GAPTOL = GAP * EPS
                    808:                      ENDIF
                    809:                      ISUPMN = IN
                    810:                      ISUPMX = 1
                    811: *                    Update WGAP so that it holds the minimum gap
                    812: *                    to the left or the right. This is crucial in the
                    813: *                    case where bisection is used to ensure that the
                    814: *                    eigenvalue is refined up to the required precision.
                    815: *                    The correct value is restored afterwards.
                    816:                      SAVGAP = WGAP(WINDEX)
                    817:                      WGAP(WINDEX) = GAP
                    818: *                    We want to use the Rayleigh Quotient Correction
                    819: *                    as often as possible since it converges quadratically
                    820: *                    when we are close enough to the desired eigenvalue.
                    821: *                    However, the Rayleigh Quotient can have the wrong sign
                    822: *                    and lead us away from the desired eigenvalue. In this
                    823: *                    case, the best we can do is to use bisection.
                    824:                      USEDBS = .FALSE.
                    825:                      USEDRQ = .FALSE.
                    826: *                    Bisection is initially turned off unless it is forced
                    827:                      NEEDBS =  .NOT.TRYRQC
                    828:  120                 CONTINUE
                    829: *                    Check if bisection should be used to refine eigenvalue
                    830:                      IF(NEEDBS) THEN
                    831: *                       Take the bisection as new iterate
                    832:                         USEDBS = .TRUE.
                    833:                         ITMP1 = IWORK( IINDR+WINDEX )
                    834:                         OFFSET = INDEXW( WBEGIN ) - 1
                    835:                         CALL DLARRB( IN, D(IBEGIN),
                    836:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
                    837:      $                       ZERO, TWO*EPS, OFFSET,
                    838:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    839:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    840:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    841:      $                       ITMP1, IINFO )
                    842:                         IF( IINFO.NE.0 ) THEN
                    843:                            INFO = -3
                    844:                            RETURN
                    845:                         ENDIF
                    846:                         LAMBDA = WORK( WINDEX )
                    847: *                       Reset twist index from inaccurate LAMBDA to
                    848: *                       force computation of true MINGMA
                    849:                         IWORK( IINDR+WINDEX ) = 0
                    850:                      ENDIF
                    851: *                    Given LAMBDA, compute the eigenvector.
                    852:                      CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
                    853:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
                    854:      $                    WORK(INDLLD+IBEGIN-1),
                    855:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    856:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    857:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
                    858:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    859:                      IF(ITER .EQ. 0) THEN
                    860:                         BSTRES = RESID
                    861:                         BSTW = LAMBDA
                    862:                      ELSEIF(RESID.LT.BSTRES) THEN
                    863:                         BSTRES = RESID
                    864:                         BSTW = LAMBDA
                    865:                      ENDIF
                    866:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
                    867:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
                    868:                      ITER = ITER + 1
                    869: 
                    870: *                    sin alpha <= |resid|/gap
                    871: *                    Note that both the residual and the gap are
                    872: *                    proportional to the matrix, so ||T|| doesn't play
                    873: *                    a role in the quotient
                    874: 
                    875: *
                    876: *                    Convergence test for Rayleigh-Quotient iteration
                    877: *                    (omitted when Bisection has been used)
                    878: *
                    879:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
                    880:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
                    881:      $                    THEN
                    882: *                       We need to check that the RQCORR update doesn't
                    883: *                       move the eigenvalue away from the desired one and
                    884: *                       towards a neighbor. -> protection with bisection
                    885:                         IF(INDEIG.LE.NEGCNT) THEN
                    886: *                          The wanted eigenvalue lies to the left
                    887:                            SGNDEF = -ONE
                    888:                         ELSE
                    889: *                          The wanted eigenvalue lies to the right
                    890:                            SGNDEF = ONE
                    891:                         ENDIF
                    892: *                       We only use the RQCORR if it improves the
                    893: *                       the iterate reasonably.
                    894:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
                    895:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
                    896:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
                    897:      $                       ) THEN
                    898:                            USEDRQ = .TRUE.
                    899: *                          Store new midpoint of bisection interval in WORK
                    900:                            IF(SGNDEF.EQ.ONE) THEN
                    901: *                             The current LAMBDA is on the left of the true
                    902: *                             eigenvalue
                    903:                               LEFT = LAMBDA
                    904: *                             We prefer to assume that the error estimate
                    905: *                             is correct. We could make the interval not
                    906: *                             as a bracket but to be modified if the RQCORR
                    907: *                             chooses to. In this case, the RIGHT side should
                    908: *                             be modified as follows:
                    909: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
                    910:                            ELSE
                    911: *                             The current LAMBDA is on the right of the true
                    912: *                             eigenvalue
                    913:                               RIGHT = LAMBDA
                    914: *                             See comment about assuming the error estimate is
                    915: *                             correct above.
                    916: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
                    917:                            ENDIF
                    918:                            WORK( WINDEX ) =
                    919:      $                       HALF * (RIGHT + LEFT)
                    920: *                          Take RQCORR since it has the correct sign and
                    921: *                          improves the iterate reasonably
                    922:                            LAMBDA = LAMBDA + RQCORR
                    923: *                          Update width of error interval
                    924:                            WERR( WINDEX ) =
                    925:      $                             HALF * (RIGHT-LEFT)
                    926:                         ELSE
                    927:                            NEEDBS = .TRUE.
                    928:                         ENDIF
                    929:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
                    930: *                             The eigenvalue is computed to bisection accuracy
                    931: *                             compute eigenvector and stop
                    932:                            USEDBS = .TRUE.
                    933:                            GOTO 120
                    934:                         ELSEIF( ITER.LT.MAXITR ) THEN
                    935:                            GOTO 120
                    936:                         ELSEIF( ITER.EQ.MAXITR ) THEN
                    937:                            NEEDBS = .TRUE.
                    938:                            GOTO 120
                    939:                         ELSE
                    940:                            INFO = 5
                    941:                            RETURN
                    942:                         END IF
                    943:                      ELSE
                    944:                         STP2II = .FALSE.
                    945:         IF(USEDRQ .AND. USEDBS .AND.
                    946:      $                     BSTRES.LE.RESID) THEN
                    947:                            LAMBDA = BSTW
                    948:                            STP2II = .TRUE.
                    949:                         ENDIF
                    950:                         IF (STP2II) THEN
                    951: *                          improve error angle by second step
                    952:                            CALL DLAR1V( IN, 1, IN, LAMBDA,
                    953:      $                          D( IBEGIN ), L( IBEGIN ),
                    954:      $                          WORK(INDLD+IBEGIN-1),
                    955:      $                          WORK(INDLLD+IBEGIN-1),
                    956:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    957:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    958:      $                          IWORK( IINDR+WINDEX ),
                    959:      $                          ISUPPZ( 2*WINDEX-1 ),
                    960:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    961:                         ENDIF
                    962:                         WORK( WINDEX ) = LAMBDA
                    963:                      END IF
                    964: *
                    965: *                    Compute FP-vector support w.r.t. whole matrix
                    966: *
                    967:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
                    968:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
                    969:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
                    970:                      ZTO = ISUPPZ( 2*WINDEX )
                    971:                      ISUPMN = ISUPMN + OLDIEN
                    972:                      ISUPMX = ISUPMX + OLDIEN
                    973: *                    Ensure vector is ok if support in the RQI has changed
                    974:                      IF(ISUPMN.LT.ZFROM) THEN
                    975:                         DO 122 II = ISUPMN,ZFROM-1
                    976:                            Z( II, WINDEX ) = ZERO
                    977:  122                    CONTINUE
                    978:                      ENDIF
                    979:                      IF(ISUPMX.GT.ZTO) THEN
                    980:                         DO 123 II = ZTO+1,ISUPMX
                    981:                            Z( II, WINDEX ) = ZERO
                    982:  123                    CONTINUE
                    983:                      ENDIF
                    984:                      CALL DSCAL( ZTO-ZFROM+1, NRMINV,
                    985:      $                       Z( ZFROM, WINDEX ), 1 )
                    986:  125                 CONTINUE
                    987: *                    Update W
                    988:                      W( WINDEX ) = LAMBDA+SIGMA
                    989: *                    Recompute the gaps on the left and right
                    990: *                    But only allow them to become larger and not
                    991: *                    smaller (which can only happen through "bad"
                    992: *                    cancellation and doesn't reflect the theory
                    993: *                    where the initial gaps are underestimated due
                    994: *                    to WERR being too crude.)
                    995:                      IF(.NOT.ESKIP) THEN
                    996:                         IF( K.GT.1) THEN
                    997:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
                    998:      $                          W(WINDEX)-WERR(WINDEX)
                    999:      $                          - W(WINDMN)-WERR(WINDMN) )
                   1000:                         ENDIF
                   1001:                         IF( WINDEX.LT.WEND ) THEN
                   1002:                            WGAP( WINDEX ) = MAX( SAVGAP,
                   1003:      $                          W( WINDPL )-WERR( WINDPL )
                   1004:      $                          - W( WINDEX )-WERR( WINDEX) )
                   1005:                         ENDIF
                   1006:                      ENDIF
                   1007:                      IDONE = IDONE + 1
                   1008:                   ENDIF
                   1009: *                 here ends the code for the current child
                   1010: *
                   1011:  139              CONTINUE
                   1012: *                 Proceed to any remaining child nodes
                   1013:                   NEWFST = J + 1
                   1014:  140           CONTINUE
                   1015:  150        CONTINUE
                   1016:             NDEPTH = NDEPTH + 1
                   1017:             GO TO 40
                   1018:          END IF
                   1019:          IBEGIN = IEND + 1
                   1020:          WBEGIN = WEND + 1
                   1021:  170  CONTINUE
                   1022: *
                   1023: 
                   1024:       RETURN
                   1025: *
                   1026: *     End of DLARRV
                   1027: *
                   1028:       END

CVSweb interface <joel.bertrand@systella.fr>