Annotation of rpl/lapack/lapack/dlarrk.f, revision 1.19

1.11      bertrand    1: *> \brief \b DLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLARRK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrk.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrk.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrk.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARRK( N, IW, GL, GU,
                     22: *                           D, E2, PIVMIN, RELTOL, W, WERR, INFO)
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER   INFO, IW, N
                     26: *       DOUBLE PRECISION    PIVMIN, RELTOL, GL, GU, W, WERR
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   D( * ), E2( * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLARRK computes one eigenvalue of a symmetric tridiagonal
                     39: *> matrix T to suitable accuracy. This is an auxiliary code to be
                     40: *> called from DSTEMR.
                     41: *>
                     42: *> To avoid overflow, the matrix must be scaled so that its
                     43: *> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
                     44: *> accuracy, it should not be much smaller than that.
                     45: *>
                     46: *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
                     47: *> Matrix", Report CS41, Computer Science Dept., Stanford
                     48: *> University, July 21, 1966.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] N
                     55: *> \verbatim
                     56: *>          N is INTEGER
                     57: *>          The order of the tridiagonal matrix T.  N >= 0.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] IW
                     61: *> \verbatim
                     62: *>          IW is INTEGER
                     63: *>          The index of the eigenvalues to be returned.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] GL
                     67: *> \verbatim
                     68: *>          GL is DOUBLE PRECISION
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] GU
                     72: *> \verbatim
                     73: *>          GU is DOUBLE PRECISION
                     74: *>          An upper and a lower bound on the eigenvalue.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] D
                     78: *> \verbatim
                     79: *>          D is DOUBLE PRECISION array, dimension (N)
                     80: *>          The n diagonal elements of the tridiagonal matrix T.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] E2
                     84: *> \verbatim
                     85: *>          E2 is DOUBLE PRECISION array, dimension (N-1)
                     86: *>          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] PIVMIN
                     90: *> \verbatim
                     91: *>          PIVMIN is DOUBLE PRECISION
                     92: *>          The minimum pivot allowed in the Sturm sequence for T.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] RELTOL
                     96: *> \verbatim
                     97: *>          RELTOL is DOUBLE PRECISION
                     98: *>          The minimum relative width of an interval.  When an interval
                     99: *>          is narrower than RELTOL times the larger (in
                    100: *>          magnitude) endpoint, then it is considered to be
                    101: *>          sufficiently small, i.e., converged.  Note: this should
                    102: *>          always be at least radix*machine epsilon.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] W
                    106: *> \verbatim
                    107: *>          W is DOUBLE PRECISION
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[out] WERR
                    111: *> \verbatim
                    112: *>          WERR is DOUBLE PRECISION
                    113: *>          The error bound on the corresponding eigenvalue approximation
                    114: *>          in W.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] INFO
                    118: *> \verbatim
                    119: *>          INFO is INTEGER
                    120: *>          = 0:       Eigenvalue converged
                    121: *>          = -1:      Eigenvalue did NOT converge
                    122: *> \endverbatim
                    123: *
                    124: *> \par Internal Parameters:
                    125: *  =========================
                    126: *>
                    127: *> \verbatim
                    128: *>  FUDGE   DOUBLE PRECISION, default = 2
                    129: *>          A "fudge factor" to widen the Gershgorin intervals.
                    130: *> \endverbatim
                    131: *
                    132: *  Authors:
                    133: *  ========
                    134: *
1.15      bertrand  135: *> \author Univ. of Tennessee
                    136: *> \author Univ. of California Berkeley
                    137: *> \author Univ. of Colorado Denver
                    138: *> \author NAG Ltd.
1.8       bertrand  139: *
1.15      bertrand  140: *> \ingroup OTHERauxiliary
1.8       bertrand  141: *
                    142: *  =====================================================================
1.1       bertrand  143:       SUBROUTINE DLARRK( N, IW, GL, GU,
                    144:      $                    D, E2, PIVMIN, RELTOL, W, WERR, INFO)
                    145: *
1.19    ! bertrand  146: *  -- LAPACK auxiliary routine --
1.1       bertrand  147: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    148: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    149: *
                    150: *     .. Scalar Arguments ..
                    151:       INTEGER   INFO, IW, N
                    152:       DOUBLE PRECISION    PIVMIN, RELTOL, GL, GU, W, WERR
                    153: *     ..
                    154: *     .. Array Arguments ..
                    155:       DOUBLE PRECISION   D( * ), E2( * )
                    156: *     ..
                    157: *
                    158: *  =====================================================================
                    159: *
                    160: *     .. Parameters ..
                    161:       DOUBLE PRECISION   FUDGE, HALF, TWO, ZERO
                    162:       PARAMETER          ( HALF = 0.5D0, TWO = 2.0D0,
                    163:      $                     FUDGE = TWO, ZERO = 0.0D0 )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       INTEGER   I, IT, ITMAX, NEGCNT
                    167:       DOUBLE PRECISION   ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
                    168:      $                   TMP2, TNORM
                    169: *     ..
                    170: *     .. External Functions ..
                    171:       DOUBLE PRECISION   DLAMCH
                    172:       EXTERNAL   DLAMCH
                    173: *     ..
                    174: *     .. Intrinsic Functions ..
                    175:       INTRINSIC          ABS, INT, LOG, MAX
                    176: *     ..
                    177: *     .. Executable Statements ..
                    178: *
1.17      bertrand  179: *     Quick return if possible
                    180: *
                    181:       IF( N.LE.0 ) THEN
                    182:          INFO = 0
                    183:          RETURN
                    184:       END IF
                    185: *
1.1       bertrand  186: *     Get machine constants
                    187:       EPS = DLAMCH( 'P' )
                    188: 
                    189:       TNORM = MAX( ABS( GL ), ABS( GU ) )
                    190:       RTOLI = RELTOL
                    191:       ATOLI = FUDGE*TWO*PIVMIN
                    192: 
                    193:       ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
                    194:      $           LOG( TWO ) ) + 2
                    195: 
                    196:       INFO = -1
                    197: 
                    198:       LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
                    199:       RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
                    200:       IT = 0
                    201: 
                    202:  10   CONTINUE
                    203: *
                    204: *     Check if interval converged or maximum number of iterations reached
                    205: *
                    206:       TMP1 = ABS( RIGHT - LEFT )
                    207:       TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
                    208:       IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
                    209:          INFO = 0
                    210:          GOTO 30
                    211:       ENDIF
                    212:       IF(IT.GT.ITMAX)
                    213:      $   GOTO 30
                    214: 
                    215: *
                    216: *     Count number of negative pivots for mid-point
                    217: *
                    218:       IT = IT + 1
                    219:       MID = HALF * (LEFT + RIGHT)
                    220:       NEGCNT = 0
                    221:       TMP1 = D( 1 ) - MID
                    222:       IF( ABS( TMP1 ).LT.PIVMIN )
                    223:      $   TMP1 = -PIVMIN
                    224:       IF( TMP1.LE.ZERO )
                    225:      $   NEGCNT = NEGCNT + 1
                    226: *
                    227:       DO 20 I = 2, N
                    228:          TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
                    229:          IF( ABS( TMP1 ).LT.PIVMIN )
                    230:      $      TMP1 = -PIVMIN
                    231:          IF( TMP1.LE.ZERO )
                    232:      $      NEGCNT = NEGCNT + 1
                    233:  20   CONTINUE
                    234: 
                    235:       IF(NEGCNT.GE.IW) THEN
                    236:          RIGHT = MID
                    237:       ELSE
                    238:          LEFT = MID
                    239:       ENDIF
                    240:       GOTO 10
                    241: 
                    242:  30   CONTINUE
                    243: *
                    244: *     Converged or maximum number of iterations reached
                    245: *
                    246:       W = HALF * (LEFT + RIGHT)
                    247:       WERR = HALF * ABS( RIGHT - LEFT )
                    248: 
                    249:       RETURN
                    250: *
                    251: *     End of DLARRK
                    252: *
                    253:       END

CVSweb interface <joel.bertrand@systella.fr>