File:  [local] / rpl / lapack / lapack / dlarrj.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:25 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLARRJ + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
   22: *                          RTOL, OFFSET, W, WERR, WORK, IWORK,
   23: *                          PIVMIN, SPDIAM, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       INTEGER            IFIRST, ILAST, INFO, N, OFFSET
   27: *       DOUBLE PRECISION   PIVMIN, RTOL, SPDIAM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   D( * ), E2( * ), W( * ),
   32: *      $                   WERR( * ), WORK( * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> Given the initial eigenvalue approximations of T, DLARRJ
   42: *> does  bisection to refine the eigenvalues of T,
   43: *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
   44: *> guesses for these eigenvalues are input in W, the corresponding estimate
   45: *> of the error in these guesses in WERR. During bisection, intervals
   46: *> [left, right] are maintained by storing their mid-points and
   47: *> semi-widths in the arrays W and WERR respectively.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] D
   60: *> \verbatim
   61: *>          D is DOUBLE PRECISION array, dimension (N)
   62: *>          The N diagonal elements of T.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] E2
   66: *> \verbatim
   67: *>          E2 is DOUBLE PRECISION array, dimension (N-1)
   68: *>          The Squares of the (N-1) subdiagonal elements of T.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] IFIRST
   72: *> \verbatim
   73: *>          IFIRST is INTEGER
   74: *>          The index of the first eigenvalue to be computed.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] ILAST
   78: *> \verbatim
   79: *>          ILAST is INTEGER
   80: *>          The index of the last eigenvalue to be computed.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] RTOL
   84: *> \verbatim
   85: *>          RTOL is DOUBLE PRECISION
   86: *>          Tolerance for the convergence of the bisection intervals.
   87: *>          An interval [LEFT,RIGHT] has converged if
   88: *>          RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
   89: *> \endverbatim
   90: *>
   91: *> \param[in] OFFSET
   92: *> \verbatim
   93: *>          OFFSET is INTEGER
   94: *>          Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
   95: *>          through ILAST-OFFSET elements of these arrays are to be used.
   96: *> \endverbatim
   97: *>
   98: *> \param[in,out] W
   99: *> \verbatim
  100: *>          W is DOUBLE PRECISION array, dimension (N)
  101: *>          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
  102: *>          estimates of the eigenvalues of L D L^T indexed IFIRST through
  103: *>          ILAST.
  104: *>          On output, these estimates are refined.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] WERR
  108: *> \verbatim
  109: *>          WERR is DOUBLE PRECISION array, dimension (N)
  110: *>          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
  111: *>          the errors in the estimates of the corresponding elements in W.
  112: *>          On output, these errors are refined.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WORK
  116: *> \verbatim
  117: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  118: *>          Workspace.
  119: *> \endverbatim
  120: *>
  121: *> \param[out] IWORK
  122: *> \verbatim
  123: *>          IWORK is INTEGER array, dimension (2*N)
  124: *>          Workspace.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] PIVMIN
  128: *> \verbatim
  129: *>          PIVMIN is DOUBLE PRECISION
  130: *>          The minimum pivot in the Sturm sequence for T.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] SPDIAM
  134: *> \verbatim
  135: *>          SPDIAM is DOUBLE PRECISION
  136: *>          The spectral diameter of T.
  137: *> \endverbatim
  138: *>
  139: *> \param[out] INFO
  140: *> \verbatim
  141: *>          INFO is INTEGER
  142: *>          Error flag.
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee 
  149: *> \author Univ. of California Berkeley 
  150: *> \author Univ. of Colorado Denver 
  151: *> \author NAG Ltd. 
  152: *
  153: *> \date September 2012
  154: *
  155: *> \ingroup auxOTHERauxiliary
  156: *
  157: *> \par Contributors:
  158: *  ==================
  159: *>
  160: *> Beresford Parlett, University of California, Berkeley, USA \n
  161: *> Jim Demmel, University of California, Berkeley, USA \n
  162: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  163: *> Osni Marques, LBNL/NERSC, USA \n
  164: *> Christof Voemel, University of California, Berkeley, USA
  165: *
  166: *  =====================================================================
  167:       SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
  168:      $                   RTOL, OFFSET, W, WERR, WORK, IWORK,
  169:      $                   PIVMIN, SPDIAM, INFO )
  170: *
  171: *  -- LAPACK auxiliary routine (version 3.4.2) --
  172: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  173: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  174: *     September 2012
  175: *
  176: *     .. Scalar Arguments ..
  177:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET
  178:       DOUBLE PRECISION   PIVMIN, RTOL, SPDIAM
  179: *     ..
  180: *     .. Array Arguments ..
  181:       INTEGER            IWORK( * )
  182:       DOUBLE PRECISION   D( * ), E2( * ), W( * ),
  183:      $                   WERR( * ), WORK( * )
  184: *     ..
  185: *
  186: *  =====================================================================
  187: *
  188: *     .. Parameters ..
  189:       DOUBLE PRECISION   ZERO, ONE, TWO, HALF
  190:       PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  191:      $                   HALF = 0.5D0 )
  192:       INTEGER   MAXITR
  193: *     ..
  194: *     .. Local Scalars ..
  195:       INTEGER            CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
  196:      $                   OLNINT, P, PREV, SAVI1
  197:       DOUBLE PRECISION   DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
  198: *
  199: *     ..
  200: *     .. Intrinsic Functions ..
  201:       INTRINSIC          ABS, MAX
  202: *     ..
  203: *     .. Executable Statements ..
  204: *
  205:       INFO = 0
  206: *
  207:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
  208:      $           LOG( TWO ) ) + 2
  209: *
  210: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
  211: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
  212: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
  213: *     for an unconverged interval is set to the index of the next unconverged
  214: *     interval, and is -1 or 0 for a converged interval. Thus a linked
  215: *     list of unconverged intervals is set up.
  216: *
  217: 
  218:       I1 = IFIRST
  219:       I2 = ILAST
  220: *     The number of unconverged intervals
  221:       NINT = 0
  222: *     The last unconverged interval found
  223:       PREV = 0
  224:       DO 75 I = I1, I2
  225:          K = 2*I
  226:          II = I - OFFSET
  227:          LEFT = W( II ) - WERR( II )
  228:          MID = W(II)
  229:          RIGHT = W( II ) + WERR( II )
  230:          WIDTH = RIGHT - MID
  231:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  232: 
  233: *        The following test prevents the test of converged intervals
  234:          IF( WIDTH.LT.RTOL*TMP ) THEN
  235: *           This interval has already converged and does not need refinement.
  236: *           (Note that the gaps might change through refining the
  237: *            eigenvalues, however, they can only get bigger.)
  238: *           Remove it from the list.
  239:             IWORK( K-1 ) = -1
  240: *           Make sure that I1 always points to the first unconverged interval
  241:             IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
  242:             IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
  243:          ELSE
  244: *           unconverged interval found
  245:             PREV = I
  246: *           Make sure that [LEFT,RIGHT] contains the desired eigenvalue
  247: *
  248: *           Do while( CNT(LEFT).GT.I-1 )
  249: *
  250:             FAC = ONE
  251:  20         CONTINUE
  252:             CNT = 0
  253:             S = LEFT
  254:             DPLUS = D( 1 ) - S
  255:             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  256:             DO 30 J = 2, N
  257:                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
  258:                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  259:  30         CONTINUE
  260:             IF( CNT.GT.I-1 ) THEN
  261:                LEFT = LEFT - WERR( II )*FAC
  262:                FAC = TWO*FAC
  263:                GO TO 20
  264:             END IF
  265: *
  266: *           Do while( CNT(RIGHT).LT.I )
  267: *
  268:             FAC = ONE
  269:  50         CONTINUE
  270:             CNT = 0
  271:             S = RIGHT
  272:             DPLUS = D( 1 ) - S
  273:             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  274:             DO 60 J = 2, N
  275:                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
  276:                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  277:  60         CONTINUE
  278:             IF( CNT.LT.I ) THEN
  279:                RIGHT = RIGHT + WERR( II )*FAC
  280:                FAC = TWO*FAC
  281:                GO TO 50
  282:             END IF
  283:             NINT = NINT + 1
  284:             IWORK( K-1 ) = I + 1
  285:             IWORK( K ) = CNT
  286:          END IF
  287:          WORK( K-1 ) = LEFT
  288:          WORK( K ) = RIGHT
  289:  75   CONTINUE
  290: 
  291: 
  292:       SAVI1 = I1
  293: *
  294: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
  295: *     and while (ITER.LT.MAXITR)
  296: *
  297:       ITER = 0
  298:  80   CONTINUE
  299:       PREV = I1 - 1
  300:       I = I1
  301:       OLNINT = NINT
  302: 
  303:       DO 100 P = 1, OLNINT
  304:          K = 2*I
  305:          II = I - OFFSET
  306:          NEXT = IWORK( K-1 )
  307:          LEFT = WORK( K-1 )
  308:          RIGHT = WORK( K )
  309:          MID = HALF*( LEFT + RIGHT )
  310: 
  311: *        semiwidth of interval
  312:          WIDTH = RIGHT - MID
  313:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  314: 
  315:          IF( ( WIDTH.LT.RTOL*TMP ) .OR.
  316:      $      (ITER.EQ.MAXITR) )THEN
  317: *           reduce number of unconverged intervals
  318:             NINT = NINT - 1
  319: *           Mark interval as converged.
  320:             IWORK( K-1 ) = 0
  321:             IF( I1.EQ.I ) THEN
  322:                I1 = NEXT
  323:             ELSE
  324: *              Prev holds the last unconverged interval previously examined
  325:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
  326:             END IF
  327:             I = NEXT
  328:             GO TO 100
  329:          END IF
  330:          PREV = I
  331: *
  332: *        Perform one bisection step
  333: *
  334:          CNT = 0
  335:          S = MID
  336:          DPLUS = D( 1 ) - S
  337:          IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  338:          DO 90 J = 2, N
  339:             DPLUS = D( J ) - S - E2( J-1 )/DPLUS
  340:             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
  341:  90      CONTINUE
  342:          IF( CNT.LE.I-1 ) THEN
  343:             WORK( K-1 ) = MID
  344:          ELSE
  345:             WORK( K ) = MID
  346:          END IF
  347:          I = NEXT
  348: 
  349:  100  CONTINUE
  350:       ITER = ITER + 1
  351: *     do another loop if there are still unconverged intervals
  352: *     However, in the last iteration, all intervals are accepted
  353: *     since this is the best we can do.
  354:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
  355: *
  356: *
  357: *     At this point, all the intervals have converged
  358:       DO 110 I = SAVI1, ILAST
  359:          K = 2*I
  360:          II = I - OFFSET
  361: *        All intervals marked by '0' have been refined.
  362:          IF( IWORK( K-1 ).EQ.0 ) THEN
  363:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
  364:             WERR( II ) = WORK( K ) - W( II )
  365:          END IF
  366:  110  CONTINUE
  367: *
  368: 
  369:       RETURN
  370: *
  371: *     End of DLARRJ
  372: *
  373:       END

CVSweb interface <joel.bertrand@systella.fr>