File:  [local] / rpl / lapack / lapack / dlarrf.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:42 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND,
    2:      $                   W, WGAP, WERR,
    3:      $                   SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
    4:      $                   DPLUS, LPLUS, WORK, INFO )
    5: *
    6: *  -- LAPACK auxiliary routine (version 3.2) --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *     November 2006
   10: **
   11: *     .. Scalar Arguments ..
   12:       INTEGER            CLSTRT, CLEND, INFO, N
   13:       DOUBLE PRECISION   CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   D( * ), DPLUS( * ), L( * ), LD( * ),
   17:      $          LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  Given the initial representation L D L^T and its cluster of close
   24: *  eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
   25: *  W( CLEND ), DLARRF finds a new relatively robust representation
   26: *  L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
   27: *  eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  N       (input) INTEGER
   33: *          The order of the matrix (subblock, if the matrix splitted).
   34: *
   35: *  D       (input) DOUBLE PRECISION array, dimension (N)
   36: *          The N diagonal elements of the diagonal matrix D.
   37: *
   38: *  L       (input) DOUBLE PRECISION array, dimension (N-1)
   39: *          The (N-1) subdiagonal elements of the unit bidiagonal
   40: *          matrix L.
   41: *
   42: *  LD      (input) DOUBLE PRECISION array, dimension (N-1)
   43: *          The (N-1) elements L(i)*D(i).
   44: *
   45: *  CLSTRT  (input) INTEGER
   46: *          The index of the first eigenvalue in the cluster.
   47: *
   48: *  CLEND   (input) INTEGER
   49: *          The index of the last eigenvalue in the cluster.
   50: *
   51: *  W       (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
   52: *          The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
   53: *          W( CLSTRT ) through W( CLEND ) form the cluster of relatively
   54: *          close eigenalues.
   55: *
   56: *  WGAP    (input/output) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
   57: *          The separation from the right neighbor eigenvalue in W.
   58: *
   59: *  WERR    (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
   60: *          WERR contain the semiwidth of the uncertainty
   61: *          interval of the corresponding eigenvalue APPROXIMATION in W
   62: *
   63: *  SPDIAM (input) estimate of the spectral diameter obtained from the
   64: *          Gerschgorin intervals
   65: *
   66: *  CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
   67: *          Set by the calling routine to protect against shifts too close
   68: *          to eigenvalues outside the cluster.
   69: *
   70: *  PIVMIN  (input) DOUBLE PRECISION
   71: *          The minimum pivot allowed in the Sturm sequence.
   72: *
   73: *  SIGMA   (output) DOUBLE PRECISION
   74: *          The shift used to form L(+) D(+) L(+)^T.
   75: *
   76: *  DPLUS   (output) DOUBLE PRECISION array, dimension (N)
   77: *          The N diagonal elements of the diagonal matrix D(+).
   78: *
   79: *  LPLUS   (output) DOUBLE PRECISION array, dimension (N-1)
   80: *          The first (N-1) elements of LPLUS contain the subdiagonal
   81: *          elements of the unit bidiagonal matrix L(+).
   82: *
   83: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
   84: *          Workspace.
   85: *
   86: *  Further Details
   87: *  ===============
   88: *
   89: *  Based on contributions by
   90: *     Beresford Parlett, University of California, Berkeley, USA
   91: *     Jim Demmel, University of California, Berkeley, USA
   92: *     Inderjit Dhillon, University of Texas, Austin, USA
   93: *     Osni Marques, LBNL/NERSC, USA
   94: *     Christof Voemel, University of California, Berkeley, USA
   95: *
   96: *  =====================================================================
   97: *
   98: *     .. Parameters ..
   99:       DOUBLE PRECISION   FOUR, MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO,
  100:      $                   ZERO
  101:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  102:      $                     FOUR = 4.0D0, QUART = 0.25D0,
  103:      $                     MAXGROWTH1 = 8.D0,
  104:      $                     MAXGROWTH2 = 8.D0 )
  105: *     ..
  106: *     .. Local Scalars ..
  107:       LOGICAL   DORRR1, FORCER, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1
  108:       INTEGER            I, INDX, KTRY, KTRYMAX, SLEFT, SRIGHT, SHIFT
  109:       PARAMETER          ( KTRYMAX = 1, SLEFT = 1, SRIGHT = 2 )
  110:       DOUBLE PRECISION   AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL,
  111:      $                   FAIL2, GROWTHBOUND, LDELTA, LDMAX, LSIGMA,
  112:      $                   MAX1, MAX2, MINGAP, OLDP, PROD, RDELTA, RDMAX,
  113:      $                   RRR1, RRR2, RSIGMA, S, SMLGROWTH, TMP, ZNM2
  114: *     ..
  115: *     .. External Functions ..
  116:       LOGICAL DISNAN
  117:       DOUBLE PRECISION   DLAMCH
  118:       EXTERNAL           DISNAN, DLAMCH
  119: *     ..
  120: *     .. External Subroutines ..
  121:       EXTERNAL           DCOPY
  122: *     ..
  123: *     .. Intrinsic Functions ..
  124:       INTRINSIC          ABS
  125: *     ..
  126: *     .. Executable Statements ..
  127: *
  128:       INFO = 0
  129:       FACT = DBLE(2**KTRYMAX)
  130:       EPS = DLAMCH( 'Precision' )
  131:       SHIFT = 0
  132:       FORCER = .FALSE.
  133: 
  134: 
  135: *     Note that we cannot guarantee that for any of the shifts tried,
  136: *     the factorization has a small or even moderate element growth.
  137: *     There could be Ritz values at both ends of the cluster and despite
  138: *     backing off, there are examples where all factorizations tried
  139: *     (in IEEE mode, allowing zero pivots & infinities) have INFINITE
  140: *     element growth.
  141: *     For this reason, we should use PIVMIN in this subroutine so that at
  142: *     least the L D L^T factorization exists. It can be checked afterwards
  143: *     whether the element growth caused bad residuals/orthogonality.
  144: 
  145: *     Decide whether the code should accept the best among all
  146: *     representations despite large element growth or signal INFO=1
  147:       NOFAIL = .TRUE.
  148: *
  149: 
  150: *     Compute the average gap length of the cluster
  151:       CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT)
  152:       AVGAP = CLWDTH / DBLE(CLEND-CLSTRT)
  153:       MINGAP = MIN(CLGAPL, CLGAPR)
  154: *     Initial values for shifts to both ends of cluster
  155:       LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT )
  156:       RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND )
  157: 
  158: *     Use a small fudge to make sure that we really shift to the outside
  159:       LSIGMA = LSIGMA - ABS(LSIGMA)* FOUR * EPS
  160:       RSIGMA = RSIGMA + ABS(RSIGMA)* FOUR * EPS
  161: 
  162: *     Compute upper bounds for how much to back off the initial shifts
  163:       LDMAX = QUART * MINGAP + TWO * PIVMIN
  164:       RDMAX = QUART * MINGAP + TWO * PIVMIN
  165: 
  166:       LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT
  167:       RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT
  168: *
  169: *     Initialize the record of the best representation found
  170: *
  171:       S = DLAMCH( 'S' )
  172:       SMLGROWTH = ONE / S
  173:       FAIL = DBLE(N-1)*MINGAP/(SPDIAM*EPS)
  174:       FAIL2 = DBLE(N-1)*MINGAP/(SPDIAM*SQRT(EPS))
  175:       BESTSHIFT = LSIGMA
  176: *
  177: *     while (KTRY <= KTRYMAX)
  178:       KTRY = 0
  179:       GROWTHBOUND = MAXGROWTH1*SPDIAM
  180: 
  181:  5    CONTINUE
  182:       SAWNAN1 = .FALSE.
  183:       SAWNAN2 = .FALSE.
  184: *     Ensure that we do not back off too much of the initial shifts
  185:       LDELTA = MIN(LDMAX,LDELTA)
  186:       RDELTA = MIN(RDMAX,RDELTA)
  187: 
  188: *     Compute the element growth when shifting to both ends of the cluster
  189: *     accept the shift if there is no element growth at one of the two ends
  190: 
  191: *     Left end
  192:       S = -LSIGMA
  193:       DPLUS( 1 ) = D( 1 ) + S
  194:       IF(ABS(DPLUS(1)).LT.PIVMIN) THEN
  195:          DPLUS(1) = -PIVMIN
  196: *        Need to set SAWNAN1 because refined RRR test should not be used
  197: *        in this case
  198:          SAWNAN1 = .TRUE.
  199:       ENDIF
  200:       MAX1 = ABS( DPLUS( 1 ) )
  201:       DO 6 I = 1, N - 1
  202:          LPLUS( I ) = LD( I ) / DPLUS( I )
  203:          S = S*LPLUS( I )*L( I ) - LSIGMA
  204:          DPLUS( I+1 ) = D( I+1 ) + S
  205:          IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN
  206:             DPLUS(I+1) = -PIVMIN
  207: *           Need to set SAWNAN1 because refined RRR test should not be used
  208: *           in this case
  209:             SAWNAN1 = .TRUE.
  210:          ENDIF
  211:          MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) )
  212:  6    CONTINUE
  213:       SAWNAN1 = SAWNAN1 .OR.  DISNAN( MAX1 )
  214: 
  215:       IF( FORCER .OR.
  216:      $   (MAX1.LE.GROWTHBOUND .AND. .NOT.SAWNAN1 ) ) THEN
  217:          SIGMA = LSIGMA
  218:          SHIFT = SLEFT
  219:          GOTO 100
  220:       ENDIF
  221: 
  222: *     Right end
  223:       S = -RSIGMA
  224:       WORK( 1 ) = D( 1 ) + S
  225:       IF(ABS(WORK(1)).LT.PIVMIN) THEN
  226:          WORK(1) = -PIVMIN
  227: *        Need to set SAWNAN2 because refined RRR test should not be used
  228: *        in this case
  229:          SAWNAN2 = .TRUE.
  230:       ENDIF
  231:       MAX2 = ABS( WORK( 1 ) )
  232:       DO 7 I = 1, N - 1
  233:          WORK( N+I ) = LD( I ) / WORK( I )
  234:          S = S*WORK( N+I )*L( I ) - RSIGMA
  235:          WORK( I+1 ) = D( I+1 ) + S
  236:          IF(ABS(WORK(I+1)).LT.PIVMIN) THEN
  237:             WORK(I+1) = -PIVMIN
  238: *           Need to set SAWNAN2 because refined RRR test should not be used
  239: *           in this case
  240:             SAWNAN2 = .TRUE.
  241:          ENDIF
  242:          MAX2 = MAX( MAX2,ABS(WORK(I+1)) )
  243:  7    CONTINUE
  244:       SAWNAN2 = SAWNAN2 .OR.  DISNAN( MAX2 )
  245: 
  246:       IF( FORCER .OR.
  247:      $   (MAX2.LE.GROWTHBOUND .AND. .NOT.SAWNAN2 ) ) THEN
  248:          SIGMA = RSIGMA
  249:          SHIFT = SRIGHT
  250:          GOTO 100
  251:       ENDIF
  252: *     If we are at this point, both shifts led to too much element growth
  253: 
  254: *     Record the better of the two shifts (provided it didn't lead to NaN)
  255:       IF(SAWNAN1.AND.SAWNAN2) THEN
  256: *        both MAX1 and MAX2 are NaN
  257:          GOTO 50
  258:       ELSE
  259:          IF( .NOT.SAWNAN1 ) THEN
  260:             INDX = 1
  261:             IF(MAX1.LE.SMLGROWTH) THEN
  262:                SMLGROWTH = MAX1
  263:                BESTSHIFT = LSIGMA
  264:             ENDIF
  265:          ENDIF
  266:          IF( .NOT.SAWNAN2 ) THEN
  267:             IF(SAWNAN1 .OR. MAX2.LE.MAX1) INDX = 2
  268:             IF(MAX2.LE.SMLGROWTH) THEN
  269:                SMLGROWTH = MAX2
  270:                BESTSHIFT = RSIGMA
  271:             ENDIF
  272:          ENDIF
  273:       ENDIF
  274: 
  275: *     If we are here, both the left and the right shift led to
  276: *     element growth. If the element growth is moderate, then
  277: *     we may still accept the representation, if it passes a
  278: *     refined test for RRR. This test supposes that no NaN occurred.
  279: *     Moreover, we use the refined RRR test only for isolated clusters.
  280:       IF((CLWDTH.LT.MINGAP/DBLE(128)) .AND.
  281:      $   (MIN(MAX1,MAX2).LT.FAIL2)
  282:      $  .AND.(.NOT.SAWNAN1).AND.(.NOT.SAWNAN2)) THEN
  283:          DORRR1 = .TRUE.
  284:       ELSE
  285:          DORRR1 = .FALSE.
  286:       ENDIF
  287:       TRYRRR1 = .TRUE.
  288:       IF( TRYRRR1 .AND. DORRR1 ) THEN
  289:       IF(INDX.EQ.1) THEN
  290:          TMP = ABS( DPLUS( N ) )
  291:          ZNM2 = ONE
  292:          PROD = ONE
  293:          OLDP = ONE
  294:          DO 15 I = N-1, 1, -1
  295:             IF( PROD .LE. EPS ) THEN
  296:                PROD =
  297:      $         ((DPLUS(I+1)*WORK(N+I+1))/(DPLUS(I)*WORK(N+I)))*OLDP
  298:             ELSE
  299:                PROD = PROD*ABS(WORK(N+I))
  300:             END IF
  301:             OLDP = PROD
  302:             ZNM2 = ZNM2 + PROD**2
  303:             TMP = MAX( TMP, ABS( DPLUS( I ) * PROD ))
  304:  15      CONTINUE
  305:          RRR1 = TMP/( SPDIAM * SQRT( ZNM2 ) )
  306:          IF (RRR1.LE.MAXGROWTH2) THEN
  307:             SIGMA = LSIGMA
  308:             SHIFT = SLEFT
  309:             GOTO 100
  310:          ENDIF
  311:       ELSE IF(INDX.EQ.2) THEN
  312:          TMP = ABS( WORK( N ) )
  313:          ZNM2 = ONE
  314:          PROD = ONE
  315:          OLDP = ONE
  316:          DO 16 I = N-1, 1, -1
  317:             IF( PROD .LE. EPS ) THEN
  318:                PROD = ((WORK(I+1)*LPLUS(I+1))/(WORK(I)*LPLUS(I)))*OLDP
  319:             ELSE
  320:                PROD = PROD*ABS(LPLUS(I))
  321:             END IF
  322:             OLDP = PROD
  323:             ZNM2 = ZNM2 + PROD**2
  324:             TMP = MAX( TMP, ABS( WORK( I ) * PROD ))
  325:  16      CONTINUE
  326:          RRR2 = TMP/( SPDIAM * SQRT( ZNM2 ) )
  327:          IF (RRR2.LE.MAXGROWTH2) THEN
  328:             SIGMA = RSIGMA
  329:             SHIFT = SRIGHT
  330:             GOTO 100
  331:          ENDIF
  332:       END IF
  333:       ENDIF
  334: 
  335:  50   CONTINUE
  336: 
  337:       IF (KTRY.LT.KTRYMAX) THEN
  338: *        If we are here, both shifts failed also the RRR test.
  339: *        Back off to the outside
  340:          LSIGMA = MAX( LSIGMA - LDELTA,
  341:      $     LSIGMA - LDMAX)
  342:          RSIGMA = MIN( RSIGMA + RDELTA,
  343:      $     RSIGMA + RDMAX )
  344:          LDELTA = TWO * LDELTA
  345:          RDELTA = TWO * RDELTA
  346:          KTRY = KTRY + 1
  347:          GOTO 5
  348:       ELSE
  349: *        None of the representations investigated satisfied our
  350: *        criteria. Take the best one we found.
  351:          IF((SMLGROWTH.LT.FAIL).OR.NOFAIL) THEN
  352:             LSIGMA = BESTSHIFT
  353:             RSIGMA = BESTSHIFT
  354:             FORCER = .TRUE.
  355:             GOTO 5
  356:          ELSE
  357:             INFO = 1
  358:             RETURN
  359:          ENDIF
  360:       END IF
  361: 
  362:  100  CONTINUE
  363:       IF (SHIFT.EQ.SLEFT) THEN
  364:       ELSEIF (SHIFT.EQ.SRIGHT) THEN
  365: *        store new L and D back into DPLUS, LPLUS
  366:          CALL DCOPY( N, WORK, 1, DPLUS, 1 )
  367:          CALL DCOPY( N-1, WORK(N+1), 1, LPLUS, 1 )
  368:       ENDIF
  369: 
  370:       RETURN
  371: *
  372: *     End of DLARRF
  373: *
  374:       END

CVSweb interface <joel.bertrand@systella.fr>