Annotation of rpl/lapack/lapack/dlarrf.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND,
                      2:      $                   W, WGAP, WERR,
                      3:      $                   SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
                      4:      $                   DPLUS, LPLUS, WORK, INFO )
                      5: *
                      6: *  -- LAPACK auxiliary routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: **
                     11: *     .. Scalar Arguments ..
                     12:       INTEGER            CLSTRT, CLEND, INFO, N
                     13:       DOUBLE PRECISION   CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   D( * ), DPLUS( * ), L( * ), LD( * ),
                     17:      $          LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  Given the initial representation L D L^T and its cluster of close
                     24: *  eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
                     25: *  W( CLEND ), DLARRF finds a new relatively robust representation
                     26: *  L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
                     27: *  eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  N       (input) INTEGER
                     33: *          The order of the matrix (subblock, if the matrix splitted).
                     34: *
                     35: *  D       (input) DOUBLE PRECISION array, dimension (N)
                     36: *          The N diagonal elements of the diagonal matrix D.
                     37: *
                     38: *  L       (input) DOUBLE PRECISION array, dimension (N-1)
                     39: *          The (N-1) subdiagonal elements of the unit bidiagonal
                     40: *          matrix L.
                     41: *
                     42: *  LD      (input) DOUBLE PRECISION array, dimension (N-1)
                     43: *          The (N-1) elements L(i)*D(i).
                     44: *
                     45: *  CLSTRT  (input) INTEGER
                     46: *          The index of the first eigenvalue in the cluster.
                     47: *
                     48: *  CLEND   (input) INTEGER
                     49: *          The index of the last eigenvalue in the cluster.
                     50: *
                     51: *  W       (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
                     52: *          The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
                     53: *          W( CLSTRT ) through W( CLEND ) form the cluster of relatively
                     54: *          close eigenalues.
                     55: *
                     56: *  WGAP    (input/output) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
                     57: *          The separation from the right neighbor eigenvalue in W.
                     58: *
                     59: *  WERR    (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1)
                     60: *          WERR contain the semiwidth of the uncertainty
                     61: *          interval of the corresponding eigenvalue APPROXIMATION in W
                     62: *
                     63: *  SPDIAM (input) estimate of the spectral diameter obtained from the
                     64: *          Gerschgorin intervals
                     65: *
                     66: *  CLGAPL, CLGAPR (input) absolute gap on each end of the cluster.
                     67: *          Set by the calling routine to protect against shifts too close
                     68: *          to eigenvalues outside the cluster.
                     69: *
                     70: *  PIVMIN  (input) DOUBLE PRECISION
                     71: *          The minimum pivot allowed in the Sturm sequence.
                     72: *
                     73: *  SIGMA   (output) DOUBLE PRECISION
                     74: *          The shift used to form L(+) D(+) L(+)^T.
                     75: *
                     76: *  DPLUS   (output) DOUBLE PRECISION array, dimension (N)
                     77: *          The N diagonal elements of the diagonal matrix D(+).
                     78: *
                     79: *  LPLUS   (output) DOUBLE PRECISION array, dimension (N-1)
                     80: *          The first (N-1) elements of LPLUS contain the subdiagonal
                     81: *          elements of the unit bidiagonal matrix L(+).
                     82: *
                     83: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
                     84: *          Workspace.
                     85: *
                     86: *  Further Details
                     87: *  ===============
                     88: *
                     89: *  Based on contributions by
                     90: *     Beresford Parlett, University of California, Berkeley, USA
                     91: *     Jim Demmel, University of California, Berkeley, USA
                     92: *     Inderjit Dhillon, University of Texas, Austin, USA
                     93: *     Osni Marques, LBNL/NERSC, USA
                     94: *     Christof Voemel, University of California, Berkeley, USA
                     95: *
                     96: *  =====================================================================
                     97: *
                     98: *     .. Parameters ..
                     99:       DOUBLE PRECISION   FOUR, MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO,
                    100:      $                   ZERO
                    101:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
                    102:      $                     FOUR = 4.0D0, QUART = 0.25D0,
                    103:      $                     MAXGROWTH1 = 8.D0,
                    104:      $                     MAXGROWTH2 = 8.D0 )
                    105: *     ..
                    106: *     .. Local Scalars ..
                    107:       LOGICAL   DORRR1, FORCER, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1
                    108:       INTEGER            I, INDX, KTRY, KTRYMAX, SLEFT, SRIGHT, SHIFT
                    109:       PARAMETER          ( KTRYMAX = 1, SLEFT = 1, SRIGHT = 2 )
                    110:       DOUBLE PRECISION   AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL,
                    111:      $                   FAIL2, GROWTHBOUND, LDELTA, LDMAX, LSIGMA,
                    112:      $                   MAX1, MAX2, MINGAP, OLDP, PROD, RDELTA, RDMAX,
                    113:      $                   RRR1, RRR2, RSIGMA, S, SMLGROWTH, TMP, ZNM2
                    114: *     ..
                    115: *     .. External Functions ..
                    116:       LOGICAL DISNAN
                    117:       DOUBLE PRECISION   DLAMCH
                    118:       EXTERNAL           DISNAN, DLAMCH
                    119: *     ..
                    120: *     .. External Subroutines ..
                    121:       EXTERNAL           DCOPY
                    122: *     ..
                    123: *     .. Intrinsic Functions ..
                    124:       INTRINSIC          ABS
                    125: *     ..
                    126: *     .. Executable Statements ..
                    127: *
                    128:       INFO = 0
                    129:       FACT = DBLE(2**KTRYMAX)
                    130:       EPS = DLAMCH( 'Precision' )
                    131:       SHIFT = 0
                    132:       FORCER = .FALSE.
                    133: 
                    134: 
                    135: *     Note that we cannot guarantee that for any of the shifts tried,
                    136: *     the factorization has a small or even moderate element growth.
                    137: *     There could be Ritz values at both ends of the cluster and despite
                    138: *     backing off, there are examples where all factorizations tried
                    139: *     (in IEEE mode, allowing zero pivots & infinities) have INFINITE
                    140: *     element growth.
                    141: *     For this reason, we should use PIVMIN in this subroutine so that at
                    142: *     least the L D L^T factorization exists. It can be checked afterwards
                    143: *     whether the element growth caused bad residuals/orthogonality.
                    144: 
                    145: *     Decide whether the code should accept the best among all
                    146: *     representations despite large element growth or signal INFO=1
                    147:       NOFAIL = .TRUE.
                    148: *
                    149: 
                    150: *     Compute the average gap length of the cluster
                    151:       CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT)
                    152:       AVGAP = CLWDTH / DBLE(CLEND-CLSTRT)
                    153:       MINGAP = MIN(CLGAPL, CLGAPR)
                    154: *     Initial values for shifts to both ends of cluster
                    155:       LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT )
                    156:       RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND )
                    157: 
                    158: *     Use a small fudge to make sure that we really shift to the outside
                    159:       LSIGMA = LSIGMA - ABS(LSIGMA)* FOUR * EPS
                    160:       RSIGMA = RSIGMA + ABS(RSIGMA)* FOUR * EPS
                    161: 
                    162: *     Compute upper bounds for how much to back off the initial shifts
                    163:       LDMAX = QUART * MINGAP + TWO * PIVMIN
                    164:       RDMAX = QUART * MINGAP + TWO * PIVMIN
                    165: 
                    166:       LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT
                    167:       RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT
                    168: *
                    169: *     Initialize the record of the best representation found
                    170: *
                    171:       S = DLAMCH( 'S' )
                    172:       SMLGROWTH = ONE / S
                    173:       FAIL = DBLE(N-1)*MINGAP/(SPDIAM*EPS)
                    174:       FAIL2 = DBLE(N-1)*MINGAP/(SPDIAM*SQRT(EPS))
                    175:       BESTSHIFT = LSIGMA
                    176: *
                    177: *     while (KTRY <= KTRYMAX)
                    178:       KTRY = 0
                    179:       GROWTHBOUND = MAXGROWTH1*SPDIAM
                    180: 
                    181:  5    CONTINUE
                    182:       SAWNAN1 = .FALSE.
                    183:       SAWNAN2 = .FALSE.
                    184: *     Ensure that we do not back off too much of the initial shifts
                    185:       LDELTA = MIN(LDMAX,LDELTA)
                    186:       RDELTA = MIN(RDMAX,RDELTA)
                    187: 
                    188: *     Compute the element growth when shifting to both ends of the cluster
                    189: *     accept the shift if there is no element growth at one of the two ends
                    190: 
                    191: *     Left end
                    192:       S = -LSIGMA
                    193:       DPLUS( 1 ) = D( 1 ) + S
                    194:       IF(ABS(DPLUS(1)).LT.PIVMIN) THEN
                    195:          DPLUS(1) = -PIVMIN
                    196: *        Need to set SAWNAN1 because refined RRR test should not be used
                    197: *        in this case
                    198:          SAWNAN1 = .TRUE.
                    199:       ENDIF
                    200:       MAX1 = ABS( DPLUS( 1 ) )
                    201:       DO 6 I = 1, N - 1
                    202:          LPLUS( I ) = LD( I ) / DPLUS( I )
                    203:          S = S*LPLUS( I )*L( I ) - LSIGMA
                    204:          DPLUS( I+1 ) = D( I+1 ) + S
                    205:          IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN
                    206:             DPLUS(I+1) = -PIVMIN
                    207: *           Need to set SAWNAN1 because refined RRR test should not be used
                    208: *           in this case
                    209:             SAWNAN1 = .TRUE.
                    210:          ENDIF
                    211:          MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) )
                    212:  6    CONTINUE
                    213:       SAWNAN1 = SAWNAN1 .OR.  DISNAN( MAX1 )
                    214: 
                    215:       IF( FORCER .OR.
                    216:      $   (MAX1.LE.GROWTHBOUND .AND. .NOT.SAWNAN1 ) ) THEN
                    217:          SIGMA = LSIGMA
                    218:          SHIFT = SLEFT
                    219:          GOTO 100
                    220:       ENDIF
                    221: 
                    222: *     Right end
                    223:       S = -RSIGMA
                    224:       WORK( 1 ) = D( 1 ) + S
                    225:       IF(ABS(WORK(1)).LT.PIVMIN) THEN
                    226:          WORK(1) = -PIVMIN
                    227: *        Need to set SAWNAN2 because refined RRR test should not be used
                    228: *        in this case
                    229:          SAWNAN2 = .TRUE.
                    230:       ENDIF
                    231:       MAX2 = ABS( WORK( 1 ) )
                    232:       DO 7 I = 1, N - 1
                    233:          WORK( N+I ) = LD( I ) / WORK( I )
                    234:          S = S*WORK( N+I )*L( I ) - RSIGMA
                    235:          WORK( I+1 ) = D( I+1 ) + S
                    236:          IF(ABS(WORK(I+1)).LT.PIVMIN) THEN
                    237:             WORK(I+1) = -PIVMIN
                    238: *           Need to set SAWNAN2 because refined RRR test should not be used
                    239: *           in this case
                    240:             SAWNAN2 = .TRUE.
                    241:          ENDIF
                    242:          MAX2 = MAX( MAX2,ABS(WORK(I+1)) )
                    243:  7    CONTINUE
                    244:       SAWNAN2 = SAWNAN2 .OR.  DISNAN( MAX2 )
                    245: 
                    246:       IF( FORCER .OR.
                    247:      $   (MAX2.LE.GROWTHBOUND .AND. .NOT.SAWNAN2 ) ) THEN
                    248:          SIGMA = RSIGMA
                    249:          SHIFT = SRIGHT
                    250:          GOTO 100
                    251:       ENDIF
                    252: *     If we are at this point, both shifts led to too much element growth
                    253: 
                    254: *     Record the better of the two shifts (provided it didn't lead to NaN)
                    255:       IF(SAWNAN1.AND.SAWNAN2) THEN
                    256: *        both MAX1 and MAX2 are NaN
                    257:          GOTO 50
                    258:       ELSE
                    259:          IF( .NOT.SAWNAN1 ) THEN
                    260:             INDX = 1
                    261:             IF(MAX1.LE.SMLGROWTH) THEN
                    262:                SMLGROWTH = MAX1
                    263:                BESTSHIFT = LSIGMA
                    264:             ENDIF
                    265:          ENDIF
                    266:          IF( .NOT.SAWNAN2 ) THEN
                    267:             IF(SAWNAN1 .OR. MAX2.LE.MAX1) INDX = 2
                    268:             IF(MAX2.LE.SMLGROWTH) THEN
                    269:                SMLGROWTH = MAX2
                    270:                BESTSHIFT = RSIGMA
                    271:             ENDIF
                    272:          ENDIF
                    273:       ENDIF
                    274: 
                    275: *     If we are here, both the left and the right shift led to
                    276: *     element growth. If the element growth is moderate, then
                    277: *     we may still accept the representation, if it passes a
                    278: *     refined test for RRR. This test supposes that no NaN occurred.
                    279: *     Moreover, we use the refined RRR test only for isolated clusters.
                    280:       IF((CLWDTH.LT.MINGAP/DBLE(128)) .AND.
                    281:      $   (MIN(MAX1,MAX2).LT.FAIL2)
                    282:      $  .AND.(.NOT.SAWNAN1).AND.(.NOT.SAWNAN2)) THEN
                    283:          DORRR1 = .TRUE.
                    284:       ELSE
                    285:          DORRR1 = .FALSE.
                    286:       ENDIF
                    287:       TRYRRR1 = .TRUE.
                    288:       IF( TRYRRR1 .AND. DORRR1 ) THEN
                    289:       IF(INDX.EQ.1) THEN
                    290:          TMP = ABS( DPLUS( N ) )
                    291:          ZNM2 = ONE
                    292:          PROD = ONE
                    293:          OLDP = ONE
                    294:          DO 15 I = N-1, 1, -1
                    295:             IF( PROD .LE. EPS ) THEN
                    296:                PROD =
                    297:      $         ((DPLUS(I+1)*WORK(N+I+1))/(DPLUS(I)*WORK(N+I)))*OLDP
                    298:             ELSE
                    299:                PROD = PROD*ABS(WORK(N+I))
                    300:             END IF
                    301:             OLDP = PROD
                    302:             ZNM2 = ZNM2 + PROD**2
                    303:             TMP = MAX( TMP, ABS( DPLUS( I ) * PROD ))
                    304:  15      CONTINUE
                    305:          RRR1 = TMP/( SPDIAM * SQRT( ZNM2 ) )
                    306:          IF (RRR1.LE.MAXGROWTH2) THEN
                    307:             SIGMA = LSIGMA
                    308:             SHIFT = SLEFT
                    309:             GOTO 100
                    310:          ENDIF
                    311:       ELSE IF(INDX.EQ.2) THEN
                    312:          TMP = ABS( WORK( N ) )
                    313:          ZNM2 = ONE
                    314:          PROD = ONE
                    315:          OLDP = ONE
                    316:          DO 16 I = N-1, 1, -1
                    317:             IF( PROD .LE. EPS ) THEN
                    318:                PROD = ((WORK(I+1)*LPLUS(I+1))/(WORK(I)*LPLUS(I)))*OLDP
                    319:             ELSE
                    320:                PROD = PROD*ABS(LPLUS(I))
                    321:             END IF
                    322:             OLDP = PROD
                    323:             ZNM2 = ZNM2 + PROD**2
                    324:             TMP = MAX( TMP, ABS( WORK( I ) * PROD ))
                    325:  16      CONTINUE
                    326:          RRR2 = TMP/( SPDIAM * SQRT( ZNM2 ) )
                    327:          IF (RRR2.LE.MAXGROWTH2) THEN
                    328:             SIGMA = RSIGMA
                    329:             SHIFT = SRIGHT
                    330:             GOTO 100
                    331:          ENDIF
                    332:       END IF
                    333:       ENDIF
                    334: 
                    335:  50   CONTINUE
                    336: 
                    337:       IF (KTRY.LT.KTRYMAX) THEN
                    338: *        If we are here, both shifts failed also the RRR test.
                    339: *        Back off to the outside
                    340:          LSIGMA = MAX( LSIGMA - LDELTA,
                    341:      $     LSIGMA - LDMAX)
                    342:          RSIGMA = MIN( RSIGMA + RDELTA,
                    343:      $     RSIGMA + RDMAX )
                    344:          LDELTA = TWO * LDELTA
                    345:          RDELTA = TWO * RDELTA
                    346:          KTRY = KTRY + 1
                    347:          GOTO 5
                    348:       ELSE
                    349: *        None of the representations investigated satisfied our
                    350: *        criteria. Take the best one we found.
                    351:          IF((SMLGROWTH.LT.FAIL).OR.NOFAIL) THEN
                    352:             LSIGMA = BESTSHIFT
                    353:             RSIGMA = BESTSHIFT
                    354:             FORCER = .TRUE.
                    355:             GOTO 5
                    356:          ELSE
                    357:             INFO = 1
                    358:             RETURN
                    359:          ENDIF
                    360:       END IF
                    361: 
                    362:  100  CONTINUE
                    363:       IF (SHIFT.EQ.SLEFT) THEN
                    364:       ELSEIF (SHIFT.EQ.SRIGHT) THEN
                    365: *        store new L and D back into DPLUS, LPLUS
                    366:          CALL DCOPY( N, WORK, 1, DPLUS, 1 )
                    367:          CALL DCOPY( N-1, WORK(N+1), 1, LPLUS, 1 )
                    368:       ENDIF
                    369: 
                    370:       RETURN
                    371: *
                    372: *     End of DLARRF
                    373: *
                    374:       END

CVSweb interface <joel.bertrand@systella.fr>