Annotation of rpl/lapack/lapack/dlarre.f, revision 1.24

1.14      bertrand    1: *> \brief \b DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block Ti, finds base representations and eigenvalues.
1.11      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.19      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.11      bertrand    7: *
                      8: *> \htmlonly
1.19      bertrand    9: *> Download DLARRE + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarre.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarre.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarre.f">
1.11      bertrand   15: *> [TXT]</a>
1.19      bertrand   16: *> \endhtmlonly
1.11      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
                     22: *                           RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
                     23: *                           W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
                     24: *                           WORK, IWORK, INFO )
1.19      bertrand   25: *
1.11      bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          RANGE
                     28: *       INTEGER            IL, INFO, IU, M, N, NSPLIT
                     29: *       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
                     33: *      $                   INDEXW( * )
                     34: *       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
                     35: *      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
                     36: *       ..
1.19      bertrand   37: *
1.11      bertrand   38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> To find the desired eigenvalues of a given real symmetric
                     45: *> tridiagonal matrix T, DLARRE sets any "small" off-diagonal
                     46: *> elements to zero, and for each unreduced block T_i, it finds
                     47: *> (a) a suitable shift at one end of the block's spectrum,
                     48: *> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
                     49: *> (c) eigenvalues of each L_i D_i L_i^T.
                     50: *> The representations and eigenvalues found are then used by
                     51: *> DSTEMR to compute the eigenvectors of T.
                     52: *> The accuracy varies depending on whether bisection is used to
                     53: *> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
                     54: *> conpute all and then discard any unwanted one.
                     55: *> As an added benefit, DLARRE also outputs the n
                     56: *> Gerschgorin intervals for the matrices L_i D_i L_i^T.
                     57: *> \endverbatim
                     58: *
                     59: *  Arguments:
                     60: *  ==========
                     61: *
                     62: *> \param[in] RANGE
                     63: *> \verbatim
                     64: *>          RANGE is CHARACTER*1
                     65: *>          = 'A': ("All")   all eigenvalues will be found.
                     66: *>          = 'V': ("Value") all eigenvalues in the half-open interval
                     67: *>                           (VL, VU] will be found.
                     68: *>          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
                     69: *>                           entire matrix) will be found.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrix. N > 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] VL
                     79: *> \verbatim
                     80: *>          VL is DOUBLE PRECISION
1.17      bertrand   81: *>          If RANGE='V', the lower bound for the eigenvalues.
                     82: *>          Eigenvalues less than or equal to VL, or greater than VU,
                     83: *>          will not be returned.  VL < VU.
                     84: *>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
                     85: *>          part of the spectrum.
1.11      bertrand   86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] VU
                     89: *> \verbatim
                     90: *>          VU is DOUBLE PRECISION
1.17      bertrand   91: *>          If RANGE='V', the upper bound for the eigenvalues.
1.11      bertrand   92: *>          Eigenvalues less than or equal to VL, or greater than VU,
                     93: *>          will not be returned.  VL < VU.
                     94: *>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
                     95: *>          part of the spectrum.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] IL
                     99: *> \verbatim
                    100: *>          IL is INTEGER
1.17      bertrand  101: *>          If RANGE='I', the index of the
                    102: *>          smallest eigenvalue to be returned.
                    103: *>          1 <= IL <= IU <= N.
1.11      bertrand  104: *> \endverbatim
                    105: *>
                    106: *> \param[in] IU
                    107: *> \verbatim
                    108: *>          IU is INTEGER
1.17      bertrand  109: *>          If RANGE='I', the index of the
                    110: *>          largest eigenvalue to be returned.
1.11      bertrand  111: *>          1 <= IL <= IU <= N.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] D
                    115: *> \verbatim
                    116: *>          D is DOUBLE PRECISION array, dimension (N)
                    117: *>          On entry, the N diagonal elements of the tridiagonal
                    118: *>          matrix T.
                    119: *>          On exit, the N diagonal elements of the diagonal
                    120: *>          matrices D_i.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in,out] E
                    124: *> \verbatim
                    125: *>          E is DOUBLE PRECISION array, dimension (N)
                    126: *>          On entry, the first (N-1) entries contain the subdiagonal
                    127: *>          elements of the tridiagonal matrix T; E(N) need not be set.
                    128: *>          On exit, E contains the subdiagonal elements of the unit
                    129: *>          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
                    130: *>          1 <= I <= NSPLIT, contain the base points sigma_i on output.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in,out] E2
                    134: *> \verbatim
                    135: *>          E2 is DOUBLE PRECISION array, dimension (N)
                    136: *>          On entry, the first (N-1) entries contain the SQUARES of the
                    137: *>          subdiagonal elements of the tridiagonal matrix T;
                    138: *>          E2(N) need not be set.
                    139: *>          On exit, the entries E2( ISPLIT( I ) ),
                    140: *>          1 <= I <= NSPLIT, have been set to zero
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] RTOL1
                    144: *> \verbatim
                    145: *>          RTOL1 is DOUBLE PRECISION
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] RTOL2
                    149: *> \verbatim
                    150: *>          RTOL2 is DOUBLE PRECISION
                    151: *>           Parameters for bisection.
                    152: *>           An interval [LEFT,RIGHT] has converged if
1.23      bertrand  153: *>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
1.11      bertrand  154: *> \endverbatim
                    155: *>
                    156: *> \param[in] SPLTOL
                    157: *> \verbatim
                    158: *>          SPLTOL is DOUBLE PRECISION
                    159: *>          The threshold for splitting.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] NSPLIT
                    163: *> \verbatim
                    164: *>          NSPLIT is INTEGER
                    165: *>          The number of blocks T splits into. 1 <= NSPLIT <= N.
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] ISPLIT
                    169: *> \verbatim
                    170: *>          ISPLIT is INTEGER array, dimension (N)
                    171: *>          The splitting points, at which T breaks up into blocks.
                    172: *>          The first block consists of rows/columns 1 to ISPLIT(1),
                    173: *>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
                    174: *>          etc., and the NSPLIT-th consists of rows/columns
                    175: *>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] M
                    179: *> \verbatim
                    180: *>          M is INTEGER
                    181: *>          The total number of eigenvalues (of all L_i D_i L_i^T)
                    182: *>          found.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] W
                    186: *> \verbatim
                    187: *>          W is DOUBLE PRECISION array, dimension (N)
                    188: *>          The first M elements contain the eigenvalues. The
                    189: *>          eigenvalues of each of the blocks, L_i D_i L_i^T, are
                    190: *>          sorted in ascending order ( DLARRE may use the
                    191: *>          remaining N-M elements as workspace).
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] WERR
                    195: *> \verbatim
                    196: *>          WERR is DOUBLE PRECISION array, dimension (N)
                    197: *>          The error bound on the corresponding eigenvalue in W.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] WGAP
                    201: *> \verbatim
                    202: *>          WGAP is DOUBLE PRECISION array, dimension (N)
                    203: *>          The separation from the right neighbor eigenvalue in W.
                    204: *>          The gap is only with respect to the eigenvalues of the same block
                    205: *>          as each block has its own representation tree.
                    206: *>          Exception: at the right end of a block we store the left gap
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[out] IBLOCK
                    210: *> \verbatim
                    211: *>          IBLOCK is INTEGER array, dimension (N)
                    212: *>          The indices of the blocks (submatrices) associated with the
                    213: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                    214: *>          W(i) belongs to the first block from the top, =2 if W(i)
                    215: *>          belongs to the second block, etc.
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[out] INDEXW
                    219: *> \verbatim
                    220: *>          INDEXW is INTEGER array, dimension (N)
                    221: *>          The indices of the eigenvalues within each block (submatrix);
                    222: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                    223: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[out] GERS
                    227: *> \verbatim
                    228: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
                    229: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
                    230: *>          is (GERS(2*i-1), GERS(2*i)).
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[out] PIVMIN
                    234: *> \verbatim
                    235: *>          PIVMIN is DOUBLE PRECISION
                    236: *>          The minimum pivot in the Sturm sequence for T.
                    237: *> \endverbatim
                    238: *>
                    239: *> \param[out] WORK
                    240: *> \verbatim
                    241: *>          WORK is DOUBLE PRECISION array, dimension (6*N)
                    242: *>          Workspace.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[out] IWORK
                    246: *> \verbatim
                    247: *>          IWORK is INTEGER array, dimension (5*N)
                    248: *>          Workspace.
                    249: *> \endverbatim
                    250: *>
                    251: *> \param[out] INFO
                    252: *> \verbatim
                    253: *>          INFO is INTEGER
                    254: *>          = 0:  successful exit
1.17      bertrand  255: *>          > 0:  A problem occurred in DLARRE.
1.11      bertrand  256: *>          < 0:  One of the called subroutines signaled an internal problem.
                    257: *>                Needs inspection of the corresponding parameter IINFO
                    258: *>                for further information.
                    259: *>
                    260: *>          =-1:  Problem in DLARRD.
                    261: *>          = 2:  No base representation could be found in MAXTRY iterations.
                    262: *>                Increasing MAXTRY and recompilation might be a remedy.
                    263: *>          =-3:  Problem in DLARRB when computing the refined root
                    264: *>                representation for DLASQ2.
                    265: *>          =-4:  Problem in DLARRB when preforming bisection on the
                    266: *>                desired part of the spectrum.
                    267: *>          =-5:  Problem in DLASQ2.
                    268: *>          =-6:  Problem in DLASQ2.
                    269: *> \endverbatim
                    270: *
                    271: *  Authors:
                    272: *  ========
                    273: *
1.19      bertrand  274: *> \author Univ. of Tennessee
                    275: *> \author Univ. of California Berkeley
                    276: *> \author Univ. of Colorado Denver
                    277: *> \author NAG Ltd.
1.11      bertrand  278: *
1.19      bertrand  279: *> \ingroup OTHERauxiliary
1.11      bertrand  280: *
                    281: *> \par Further Details:
                    282: *  =====================
                    283: *>
                    284: *> \verbatim
                    285: *>
                    286: *>  The base representations are required to suffer very little
                    287: *>  element growth and consequently define all their eigenvalues to
                    288: *>  high relative accuracy.
                    289: *> \endverbatim
                    290: *
                    291: *> \par Contributors:
                    292: *  ==================
                    293: *>
                    294: *>     Beresford Parlett, University of California, Berkeley, USA \n
                    295: *>     Jim Demmel, University of California, Berkeley, USA \n
                    296: *>     Inderjit Dhillon, University of Texas, Austin, USA \n
                    297: *>     Osni Marques, LBNL/NERSC, USA \n
                    298: *>     Christof Voemel, University of California, Berkeley, USA \n
                    299: *>
                    300: *  =====================================================================
1.1       bertrand  301:       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
                    302:      $                    RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
                    303:      $                    W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
                    304:      $                    WORK, IWORK, INFO )
                    305: *
1.24    ! bertrand  306: *  -- LAPACK auxiliary routine --
1.1       bertrand  307: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    308: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    309: *
                    310: *     .. Scalar Arguments ..
                    311:       CHARACTER          RANGE
                    312:       INTEGER            IL, INFO, IU, M, N, NSPLIT
                    313:       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
                    314: *     ..
                    315: *     .. Array Arguments ..
                    316:       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
                    317:      $                   INDEXW( * )
                    318:       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
                    319:      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
                    320: *     ..
                    321: *
                    322: *  =====================================================================
                    323: *
                    324: *     .. Parameters ..
                    325:       DOUBLE PRECISION   FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
                    326:      $                   MAXGROWTH, ONE, PERT, TWO, ZERO
                    327:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    328:      $                     TWO = 2.0D0, FOUR=4.0D0,
                    329:      $                     HNDRD = 100.0D0,
                    330:      $                     PERT = 8.0D0,
                    331:      $                     HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
                    332:      $                     MAXGROWTH = 64.0D0, FUDGE = 2.0D0 )
                    333:       INTEGER            MAXTRY, ALLRNG, INDRNG, VALRNG
                    334:       PARAMETER          ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2,
                    335:      $                     VALRNG = 3 )
                    336: *     ..
                    337: *     .. Local Scalars ..
                    338:       LOGICAL            FORCEB, NOREP, USEDQD
                    339:       INTEGER            CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
                    340:      $                   IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
                    341:      $                   WBEGIN, WEND
                    342:       DOUBLE PRECISION   AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
                    343:      $                   EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
                    344:      $                   RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
                    345:      $                   TAU, TMP, TMP1
                    346: 
                    347: 
                    348: *     ..
                    349: *     .. Local Arrays ..
                    350:       INTEGER            ISEED( 4 )
                    351: *     ..
                    352: *     .. External Functions ..
                    353:       LOGICAL            LSAME
                    354:       DOUBLE PRECISION            DLAMCH
                    355:       EXTERNAL           DLAMCH, LSAME
                    356: 
                    357: *     ..
                    358: *     .. External Subroutines ..
                    359:       EXTERNAL           DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, DLARRD,
1.21      bertrand  360:      $                   DLASQ2, DLARRK
1.1       bertrand  361: *     ..
                    362: *     .. Intrinsic Functions ..
                    363:       INTRINSIC          ABS, MAX, MIN
                    364: 
                    365: *     ..
                    366: *     .. Executable Statements ..
                    367: *
                    368: 
                    369:       INFO = 0
1.21      bertrand  370: *
                    371: *     Quick return if possible
                    372: *
                    373:       IF( N.LE.0 ) THEN
                    374:          RETURN
                    375:       END IF
1.1       bertrand  376: *
                    377: *     Decode RANGE
                    378: *
                    379:       IF( LSAME( RANGE, 'A' ) ) THEN
                    380:          IRANGE = ALLRNG
                    381:       ELSE IF( LSAME( RANGE, 'V' ) ) THEN
                    382:          IRANGE = VALRNG
                    383:       ELSE IF( LSAME( RANGE, 'I' ) ) THEN
                    384:          IRANGE = INDRNG
                    385:       END IF
                    386: 
                    387:       M = 0
                    388: 
                    389: *     Get machine constants
                    390:       SAFMIN = DLAMCH( 'S' )
                    391:       EPS = DLAMCH( 'P' )
                    392: 
                    393: *     Set parameters
                    394:       RTL = SQRT(EPS)
                    395:       BSRTOL = SQRT(EPS)
                    396: 
                    397: *     Treat case of 1x1 matrix for quick return
                    398:       IF( N.EQ.1 ) THEN
                    399:          IF( (IRANGE.EQ.ALLRNG).OR.
                    400:      $       ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
                    401:      $       ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
                    402:             M = 1
                    403:             W(1) = D(1)
                    404: *           The computation error of the eigenvalue is zero
                    405:             WERR(1) = ZERO
                    406:             WGAP(1) = ZERO
                    407:             IBLOCK( 1 ) = 1
                    408:             INDEXW( 1 ) = 1
                    409:             GERS(1) = D( 1 )
                    410:             GERS(2) = D( 1 )
                    411:          ENDIF
                    412: *        store the shift for the initial RRR, which is zero in this case
                    413:          E(1) = ZERO
                    414:          RETURN
                    415:       END IF
                    416: 
                    417: *     General case: tridiagonal matrix of order > 1
                    418: *
                    419: *     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
                    420: *     Compute maximum off-diagonal entry and pivmin.
                    421:       GL = D(1)
                    422:       GU = D(1)
                    423:       EOLD = ZERO
                    424:       EMAX = ZERO
                    425:       E(N) = ZERO
                    426:       DO 5 I = 1,N
                    427:          WERR(I) = ZERO
                    428:          WGAP(I) = ZERO
                    429:          EABS = ABS( E(I) )
                    430:          IF( EABS .GE. EMAX ) THEN
                    431:             EMAX = EABS
                    432:          END IF
                    433:          TMP1 = EABS + EOLD
                    434:          GERS( 2*I-1) = D(I) - TMP1
                    435:          GL =  MIN( GL, GERS( 2*I - 1))
                    436:          GERS( 2*I ) = D(I) + TMP1
                    437:          GU = MAX( GU, GERS(2*I) )
                    438:          EOLD  = EABS
                    439:  5    CONTINUE
                    440: *     The minimum pivot allowed in the Sturm sequence for T
                    441:       PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
                    442: *     Compute spectral diameter. The Gerschgorin bounds give an
                    443: *     estimate that is wrong by at most a factor of SQRT(2)
                    444:       SPDIAM = GU - GL
                    445: 
                    446: *     Compute splitting points
                    447:       CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM,
                    448:      $                    NSPLIT, ISPLIT, IINFO )
                    449: 
                    450: *     Can force use of bisection instead of faster DQDS.
                    451: *     Option left in the code for future multisection work.
                    452:       FORCEB = .FALSE.
                    453: 
                    454: *     Initialize USEDQD, DQDS should be used for ALLRNG unless someone
                    455: *     explicitly wants bisection.
                    456:       USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB))
                    457: 
                    458:       IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN
                    459: *        Set interval [VL,VU] that contains all eigenvalues
                    460:          VL = GL
                    461:          VU = GU
                    462:       ELSE
                    463: *        We call DLARRD to find crude approximations to the eigenvalues
                    464: *        in the desired range. In case IRANGE = INDRNG, we also obtain the
                    465: *        interval (VL,VU] that contains all the wanted eigenvalues.
                    466: *        An interval [LEFT,RIGHT] has converged if
                    467: *        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
                    468: *        DLARRD needs a WORK of size 4*N, IWORK of size 3*N
                    469:          CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
                    470:      $                    BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
                    471:      $                    MM, W, WERR, VL, VU, IBLOCK, INDEXW,
                    472:      $                    WORK, IWORK, IINFO )
                    473:          IF( IINFO.NE.0 ) THEN
                    474:             INFO = -1
                    475:             RETURN
                    476:          ENDIF
                    477: *        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
                    478:          DO 14 I = MM+1,N
                    479:             W( I ) = ZERO
                    480:             WERR( I ) = ZERO
                    481:             IBLOCK( I ) = 0
                    482:             INDEXW( I ) = 0
                    483:  14      CONTINUE
                    484:       END IF
                    485: 
                    486: 
                    487: ***
                    488: *     Loop over unreduced blocks
                    489:       IBEGIN = 1
                    490:       WBEGIN = 1
                    491:       DO 170 JBLK = 1, NSPLIT
                    492:          IEND = ISPLIT( JBLK )
                    493:          IN = IEND - IBEGIN + 1
                    494: 
                    495: *        1 X 1 block
                    496:          IF( IN.EQ.1 ) THEN
                    497:             IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND.
                    498:      $         ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
                    499:      $        .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK))
                    500:      $        ) THEN
                    501:                M = M + 1
                    502:                W( M ) = D( IBEGIN )
                    503:                WERR(M) = ZERO
                    504: *              The gap for a single block doesn't matter for the later
                    505: *              algorithm and is assigned an arbitrary large value
                    506:                WGAP(M) = ZERO
                    507:                IBLOCK( M ) = JBLK
                    508:                INDEXW( M ) = 1
                    509:                WBEGIN = WBEGIN + 1
                    510:             ENDIF
                    511: *           E( IEND ) holds the shift for the initial RRR
                    512:             E( IEND ) = ZERO
                    513:             IBEGIN = IEND + 1
                    514:             GO TO 170
                    515:          END IF
                    516: *
                    517: *        Blocks of size larger than 1x1
                    518: *
                    519: *        E( IEND ) will hold the shift for the initial RRR, for now set it =0
                    520:          E( IEND ) = ZERO
                    521: *
                    522: *        Find local outer bounds GL,GU for the block
                    523:          GL = D(IBEGIN)
                    524:          GU = D(IBEGIN)
                    525:          DO 15 I = IBEGIN , IEND
                    526:             GL = MIN( GERS( 2*I-1 ), GL )
                    527:             GU = MAX( GERS( 2*I ), GU )
                    528:  15      CONTINUE
                    529:          SPDIAM = GU - GL
                    530: 
                    531:          IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
                    532: *           Count the number of eigenvalues in the current block.
                    533:             MB = 0
                    534:             DO 20 I = WBEGIN,MM
                    535:                IF( IBLOCK(I).EQ.JBLK ) THEN
                    536:                   MB = MB+1
                    537:                ELSE
                    538:                   GOTO 21
                    539:                ENDIF
                    540:  20         CONTINUE
                    541:  21         CONTINUE
                    542: 
                    543:             IF( MB.EQ.0) THEN
                    544: *              No eigenvalue in the current block lies in the desired range
                    545: *              E( IEND ) holds the shift for the initial RRR
                    546:                E( IEND ) = ZERO
                    547:                IBEGIN = IEND + 1
                    548:                GO TO 170
                    549:             ELSE
                    550: 
                    551: *              Decide whether dqds or bisection is more efficient
                    552:                USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
                    553:                WEND = WBEGIN + MB - 1
                    554: *              Calculate gaps for the current block
                    555: *              In later stages, when representations for individual
                    556: *              eigenvalues are different, we use SIGMA = E( IEND ).
                    557:                SIGMA = ZERO
                    558:                DO 30 I = WBEGIN, WEND - 1
                    559:                   WGAP( I ) = MAX( ZERO,
                    560:      $                        W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
                    561:  30            CONTINUE
                    562:                WGAP( WEND ) = MAX( ZERO,
                    563:      $                     VU - SIGMA - (W( WEND )+WERR( WEND )))
                    564: *              Find local index of the first and last desired evalue.
                    565:                INDL = INDEXW(WBEGIN)
                    566:                INDU = INDEXW( WEND )
                    567:             ENDIF
                    568:          ENDIF
                    569:          IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
                    570: *           Case of DQDS
                    571: *           Find approximations to the extremal eigenvalues of the block
                    572:             CALL DLARRK( IN, 1, GL, GU, D(IBEGIN),
                    573:      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
                    574:             IF( IINFO.NE.0 ) THEN
                    575:                INFO = -1
                    576:                RETURN
                    577:             ENDIF
                    578:             ISLEFT = MAX(GL, TMP - TMP1
                    579:      $               - HNDRD * EPS* ABS(TMP - TMP1))
                    580: 
                    581:             CALL DLARRK( IN, IN, GL, GU, D(IBEGIN),
                    582:      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
                    583:             IF( IINFO.NE.0 ) THEN
                    584:                INFO = -1
                    585:                RETURN
                    586:             ENDIF
                    587:             ISRGHT = MIN(GU, TMP + TMP1
                    588:      $                 + HNDRD * EPS * ABS(TMP + TMP1))
                    589: *           Improve the estimate of the spectral diameter
                    590:             SPDIAM = ISRGHT - ISLEFT
                    591:          ELSE
                    592: *           Case of bisection
                    593: *           Find approximations to the wanted extremal eigenvalues
                    594:             ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
                    595:      $                  - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
                    596:             ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
                    597:      $                  + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
                    598:          ENDIF
                    599: 
                    600: 
                    601: *        Decide whether the base representation for the current block
                    602: *        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
                    603: *        should be on the left or the right end of the current block.
                    604: *        The strategy is to shift to the end which is "more populated"
                    605: *        Furthermore, decide whether to use DQDS for the computation of
                    606: *        the eigenvalue approximations at the end of DLARRE or bisection.
                    607: *        dqds is chosen if all eigenvalues are desired or the number of
                    608: *        eigenvalues to be computed is large compared to the blocksize.
                    609:          IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    610: *           If all the eigenvalues have to be computed, we use dqd
                    611:             USEDQD = .TRUE.
                    612: *           INDL is the local index of the first eigenvalue to compute
                    613:             INDL = 1
                    614:             INDU = IN
                    615: *           MB =  number of eigenvalues to compute
                    616:             MB = IN
                    617:             WEND = WBEGIN + MB - 1
                    618: *           Define 1/4 and 3/4 points of the spectrum
                    619:             S1 = ISLEFT + FOURTH * SPDIAM
                    620:             S2 = ISRGHT - FOURTH * SPDIAM
                    621:          ELSE
                    622: *           DLARRD has computed IBLOCK and INDEXW for each eigenvalue
                    623: *           approximation.
                    624: *           choose sigma
                    625:             IF( USEDQD ) THEN
                    626:                S1 = ISLEFT + FOURTH * SPDIAM
                    627:                S2 = ISRGHT - FOURTH * SPDIAM
                    628:             ELSE
                    629:                TMP = MIN(ISRGHT,VU) -  MAX(ISLEFT,VL)
                    630:                S1 =  MAX(ISLEFT,VL) + FOURTH * TMP
                    631:                S2 =  MIN(ISRGHT,VU) - FOURTH * TMP
                    632:             ENDIF
                    633:          ENDIF
                    634: 
                    635: *        Compute the negcount at the 1/4 and 3/4 points
                    636:          IF(MB.GT.1) THEN
                    637:             CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN),
                    638:      $                    E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
                    639:          ENDIF
                    640: 
                    641:          IF(MB.EQ.1) THEN
                    642:             SIGMA = GL
                    643:             SGNDEF = ONE
                    644:          ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
                    645:             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    646:                SIGMA = MAX(ISLEFT,GL)
                    647:             ELSEIF( USEDQD ) THEN
                    648: *              use Gerschgorin bound as shift to get pos def matrix
                    649: *              for dqds
                    650:                SIGMA = ISLEFT
                    651:             ELSE
                    652: *              use approximation of the first desired eigenvalue of the
                    653: *              block as shift
                    654:                SIGMA = MAX(ISLEFT,VL)
                    655:             ENDIF
                    656:             SGNDEF = ONE
                    657:          ELSE
                    658:             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    659:                SIGMA = MIN(ISRGHT,GU)
                    660:             ELSEIF( USEDQD ) THEN
                    661: *              use Gerschgorin bound as shift to get neg def matrix
                    662: *              for dqds
                    663:                SIGMA = ISRGHT
                    664:             ELSE
                    665: *              use approximation of the first desired eigenvalue of the
                    666: *              block as shift
                    667:                SIGMA = MIN(ISRGHT,VU)
                    668:             ENDIF
                    669:             SGNDEF = -ONE
                    670:          ENDIF
                    671: 
                    672: 
                    673: *        An initial SIGMA has been chosen that will be used for computing
                    674: *        T - SIGMA I = L D L^T
                    675: *        Define the increment TAU of the shift in case the initial shift
                    676: *        needs to be refined to obtain a factorization with not too much
                    677: *        element growth.
                    678:          IF( USEDQD ) THEN
                    679: *           The initial SIGMA was to the outer end of the spectrum
                    680: *           the matrix is definite and we need not retreat.
                    681:             TAU = SPDIAM*EPS*N + TWO*PIVMIN
1.10      bertrand  682:             TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) )
1.1       bertrand  683:          ELSE
                    684:             IF(MB.GT.1) THEN
                    685:                CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
                    686:                AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN))
                    687:                IF( SGNDEF.EQ.ONE ) THEN
                    688:                   TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
                    689:                   TAU = MAX(TAU,WERR(WBEGIN))
                    690:                ELSE
                    691:                   TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
                    692:                   TAU = MAX(TAU,WERR(WEND))
                    693:                ENDIF
                    694:             ELSE
                    695:                TAU = WERR(WBEGIN)
                    696:             ENDIF
                    697:          ENDIF
                    698: *
                    699:          DO 80 IDUM = 1, MAXTRY
                    700: *           Compute L D L^T factorization of tridiagonal matrix T - sigma I.
                    701: *           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
                    702: *           pivots in WORK(2*IN+1:3*IN)
                    703:             DPIVOT = D( IBEGIN ) - SIGMA
                    704:             WORK( 1 ) = DPIVOT
                    705:             DMAX = ABS( WORK(1) )
                    706:             J = IBEGIN
                    707:             DO 70 I = 1, IN - 1
                    708:                WORK( 2*IN+I ) = ONE / WORK( I )
                    709:                TMP = E( J )*WORK( 2*IN+I )
                    710:                WORK( IN+I ) = TMP
                    711:                DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
                    712:                WORK( I+1 ) = DPIVOT
                    713:                DMAX = MAX( DMAX, ABS(DPIVOT) )
                    714:                J = J + 1
                    715:  70         CONTINUE
                    716: *           check for element growth
                    717:             IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
                    718:                NOREP = .TRUE.
                    719:             ELSE
                    720:                NOREP = .FALSE.
                    721:             ENDIF
                    722:             IF( USEDQD .AND. .NOT.NOREP ) THEN
                    723: *              Ensure the definiteness of the representation
                    724: *              All entries of D (of L D L^T) must have the same sign
                    725:                DO 71 I = 1, IN
                    726:                   TMP = SGNDEF*WORK( I )
                    727:                   IF( TMP.LT.ZERO ) NOREP = .TRUE.
                    728:  71            CONTINUE
                    729:             ENDIF
                    730:             IF(NOREP) THEN
                    731: *              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
                    732: *              shift which makes the matrix definite. So we should end up
                    733: *              here really only in the case of IRANGE = VALRNG or INDRNG.
                    734:                IF( IDUM.EQ.MAXTRY-1 ) THEN
                    735:                   IF( SGNDEF.EQ.ONE ) THEN
                    736: *                    The fudged Gerschgorin shift should succeed
                    737:                      SIGMA =
                    738:      $                    GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
                    739:                   ELSE
                    740:                      SIGMA =
                    741:      $                    GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
                    742:                   END IF
                    743:                ELSE
                    744:                   SIGMA = SIGMA - SGNDEF * TAU
                    745:                   TAU = TWO * TAU
                    746:                END IF
                    747:             ELSE
                    748: *              an initial RRR is found
                    749:                GO TO 83
                    750:             END IF
                    751:  80      CONTINUE
                    752: *        if the program reaches this point, no base representation could be
                    753: *        found in MAXTRY iterations.
                    754:          INFO = 2
                    755:          RETURN
                    756: 
                    757:  83      CONTINUE
                    758: *        At this point, we have found an initial base representation
                    759: *        T - SIGMA I = L D L^T with not too much element growth.
                    760: *        Store the shift.
                    761:          E( IEND ) = SIGMA
                    762: *        Store D and L.
                    763:          CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
                    764:          CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
                    765: 
                    766: 
                    767:          IF(MB.GT.1 ) THEN
                    768: *
                    769: *           Perturb each entry of the base representation by a small
                    770: *           (but random) relative amount to overcome difficulties with
                    771: *           glued matrices.
                    772: *
                    773:             DO 122 I = 1, 4
                    774:                ISEED( I ) = 1
                    775:  122        CONTINUE
                    776: 
                    777:             CALL DLARNV(2, ISEED, 2*IN-1, WORK(1))
                    778:             DO 125 I = 1,IN-1
                    779:                D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
                    780:                E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
                    781:  125        CONTINUE
                    782:             D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
                    783: *
                    784:          ENDIF
                    785: *
                    786: *        Don't update the Gerschgorin intervals because keeping track
                    787: *        of the updates would be too much work in DLARRV.
                    788: *        We update W instead and use it to locate the proper Gerschgorin
                    789: *        intervals.
                    790: 
                    791: *        Compute the required eigenvalues of L D L' by bisection or dqds
                    792:          IF ( .NOT.USEDQD ) THEN
                    793: *           If DLARRD has been used, shift the eigenvalue approximations
                    794: *           according to their representation. This is necessary for
                    795: *           a uniform DLARRV since dqds computes eigenvalues of the
                    796: *           shifted representation. In DLARRV, W will always hold the
                    797: *           UNshifted eigenvalue approximation.
                    798:             DO 134 J=WBEGIN,WEND
                    799:                W(J) = W(J) - SIGMA
                    800:                WERR(J) = WERR(J) + ABS(W(J)) * EPS
                    801:  134        CONTINUE
                    802: *           call DLARRB to reduce eigenvalue error of the approximations
                    803: *           from DLARRD
                    804:             DO 135 I = IBEGIN, IEND-1
                    805:                WORK( I ) = D( I ) * E( I )**2
                    806:  135        CONTINUE
                    807: *           use bisection to find EV from INDL to INDU
                    808:             CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN),
                    809:      $                  INDL, INDU, RTOL1, RTOL2, INDL-1,
                    810:      $                  W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
                    811:      $                  WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
                    812:      $                  IN, IINFO )
                    813:             IF( IINFO .NE. 0 ) THEN
                    814:                INFO = -4
                    815:                RETURN
                    816:             END IF
                    817: *           DLARRB computes all gaps correctly except for the last one
                    818: *           Record distance to VU/GU
                    819:             WGAP( WEND ) = MAX( ZERO,
                    820:      $           ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
                    821:             DO 138 I = INDL, INDU
                    822:                M = M + 1
                    823:                IBLOCK(M) = JBLK
                    824:                INDEXW(M) = I
                    825:  138        CONTINUE
                    826:          ELSE
                    827: *           Call dqds to get all eigs (and then possibly delete unwanted
                    828: *           eigenvalues).
                    829: *           Note that dqds finds the eigenvalues of the L D L^T representation
                    830: *           of T to high relative accuracy. High relative accuracy
                    831: *           might be lost when the shift of the RRR is subtracted to obtain
                    832: *           the eigenvalues of T. However, T is not guaranteed to define its
                    833: *           eigenvalues to high relative accuracy anyway.
                    834: *           Set RTOL to the order of the tolerance used in DLASQ2
                    835: *           This is an ESTIMATED error, the worst case bound is 4*N*EPS
                    836: *           which is usually too large and requires unnecessary work to be
                    837: *           done by bisection when computing the eigenvectors
                    838:             RTOL = LOG(DBLE(IN)) * FOUR * EPS
                    839:             J = IBEGIN
                    840:             DO 140 I = 1, IN - 1
                    841:                WORK( 2*I-1 ) = ABS( D( J ) )
                    842:                WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
                    843:                J = J + 1
                    844:   140       CONTINUE
                    845:             WORK( 2*IN-1 ) = ABS( D( IEND ) )
                    846:             WORK( 2*IN ) = ZERO
                    847:             CALL DLASQ2( IN, WORK, IINFO )
                    848:             IF( IINFO .NE. 0 ) THEN
                    849: *              If IINFO = -5 then an index is part of a tight cluster
                    850: *              and should be changed. The index is in IWORK(1) and the
                    851: *              gap is in WORK(N+1)
                    852:                INFO = -5
                    853:                RETURN
                    854:             ELSE
                    855: *              Test that all eigenvalues are positive as expected
                    856:                DO 149 I = 1, IN
                    857:                   IF( WORK( I ).LT.ZERO ) THEN
                    858:                      INFO = -6
                    859:                      RETURN
                    860:                   ENDIF
                    861:  149           CONTINUE
                    862:             END IF
                    863:             IF( SGNDEF.GT.ZERO ) THEN
                    864:                DO 150 I = INDL, INDU
                    865:                   M = M + 1
                    866:                   W( M ) = WORK( IN-I+1 )
                    867:                   IBLOCK( M ) = JBLK
                    868:                   INDEXW( M ) = I
                    869:  150           CONTINUE
                    870:             ELSE
                    871:                DO 160 I = INDL, INDU
                    872:                   M = M + 1
                    873:                   W( M ) = -WORK( I )
                    874:                   IBLOCK( M ) = JBLK
                    875:                   INDEXW( M ) = I
                    876:  160           CONTINUE
                    877:             END IF
                    878: 
                    879:             DO 165 I = M - MB + 1, M
                    880: *              the value of RTOL below should be the tolerance in DLASQ2
                    881:                WERR( I ) = RTOL * ABS( W(I) )
                    882:  165        CONTINUE
                    883:             DO 166 I = M - MB + 1, M - 1
                    884: *              compute the right gap between the intervals
                    885:                WGAP( I ) = MAX( ZERO,
                    886:      $                          W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
                    887:  166        CONTINUE
                    888:             WGAP( M ) = MAX( ZERO,
                    889:      $           ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
                    890:          END IF
                    891: *        proceed with next block
                    892:          IBEGIN = IEND + 1
                    893:          WBEGIN = WEND + 1
                    894:  170  CONTINUE
                    895: *
                    896: 
                    897:       RETURN
                    898: *
1.24    ! bertrand  899: *     End of DLARRE
1.1       bertrand  900: *
                    901:       END

CVSweb interface <joel.bertrand@systella.fr>