Annotation of rpl/lapack/lapack/dlarre.f, revision 1.11

1.11    ! bertrand    1: *> \brief \b DLARRE
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLARRE + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarre.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarre.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarre.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
        !            22: *                           RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
        !            23: *                           W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
        !            24: *                           WORK, IWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       CHARACTER          RANGE
        !            28: *       INTEGER            IL, INFO, IU, M, N, NSPLIT
        !            29: *       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
        !            33: *      $                   INDEXW( * )
        !            34: *       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
        !            35: *      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
        !            36: *       ..
        !            37: *  
        !            38: *
        !            39: *> \par Purpose:
        !            40: *  =============
        !            41: *>
        !            42: *> \verbatim
        !            43: *>
        !            44: *> To find the desired eigenvalues of a given real symmetric
        !            45: *> tridiagonal matrix T, DLARRE sets any "small" off-diagonal
        !            46: *> elements to zero, and for each unreduced block T_i, it finds
        !            47: *> (a) a suitable shift at one end of the block's spectrum,
        !            48: *> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
        !            49: *> (c) eigenvalues of each L_i D_i L_i^T.
        !            50: *> The representations and eigenvalues found are then used by
        !            51: *> DSTEMR to compute the eigenvectors of T.
        !            52: *> The accuracy varies depending on whether bisection is used to
        !            53: *> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
        !            54: *> conpute all and then discard any unwanted one.
        !            55: *> As an added benefit, DLARRE also outputs the n
        !            56: *> Gerschgorin intervals for the matrices L_i D_i L_i^T.
        !            57: *> \endverbatim
        !            58: *
        !            59: *  Arguments:
        !            60: *  ==========
        !            61: *
        !            62: *> \param[in] RANGE
        !            63: *> \verbatim
        !            64: *>          RANGE is CHARACTER*1
        !            65: *>          = 'A': ("All")   all eigenvalues will be found.
        !            66: *>          = 'V': ("Value") all eigenvalues in the half-open interval
        !            67: *>                           (VL, VU] will be found.
        !            68: *>          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
        !            69: *>                           entire matrix) will be found.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] N
        !            73: *> \verbatim
        !            74: *>          N is INTEGER
        !            75: *>          The order of the matrix. N > 0.
        !            76: *> \endverbatim
        !            77: *>
        !            78: *> \param[in,out] VL
        !            79: *> \verbatim
        !            80: *>          VL is DOUBLE PRECISION
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in,out] VU
        !            84: *> \verbatim
        !            85: *>          VU is DOUBLE PRECISION
        !            86: *>          If RANGE='V', the lower and upper bounds for the eigenvalues.
        !            87: *>          Eigenvalues less than or equal to VL, or greater than VU,
        !            88: *>          will not be returned.  VL < VU.
        !            89: *>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
        !            90: *>          part of the spectrum.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] IL
        !            94: *> \verbatim
        !            95: *>          IL is INTEGER
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] IU
        !            99: *> \verbatim
        !           100: *>          IU is INTEGER
        !           101: *>          If RANGE='I', the indices (in ascending order) of the
        !           102: *>          smallest and largest eigenvalues to be returned.
        !           103: *>          1 <= IL <= IU <= N.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in,out] D
        !           107: *> \verbatim
        !           108: *>          D is DOUBLE PRECISION array, dimension (N)
        !           109: *>          On entry, the N diagonal elements of the tridiagonal
        !           110: *>          matrix T.
        !           111: *>          On exit, the N diagonal elements of the diagonal
        !           112: *>          matrices D_i.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in,out] E
        !           116: *> \verbatim
        !           117: *>          E is DOUBLE PRECISION array, dimension (N)
        !           118: *>          On entry, the first (N-1) entries contain the subdiagonal
        !           119: *>          elements of the tridiagonal matrix T; E(N) need not be set.
        !           120: *>          On exit, E contains the subdiagonal elements of the unit
        !           121: *>          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
        !           122: *>          1 <= I <= NSPLIT, contain the base points sigma_i on output.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in,out] E2
        !           126: *> \verbatim
        !           127: *>          E2 is DOUBLE PRECISION array, dimension (N)
        !           128: *>          On entry, the first (N-1) entries contain the SQUARES of the
        !           129: *>          subdiagonal elements of the tridiagonal matrix T;
        !           130: *>          E2(N) need not be set.
        !           131: *>          On exit, the entries E2( ISPLIT( I ) ),
        !           132: *>          1 <= I <= NSPLIT, have been set to zero
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[in] RTOL1
        !           136: *> \verbatim
        !           137: *>          RTOL1 is DOUBLE PRECISION
        !           138: *> \endverbatim
        !           139: *>
        !           140: *> \param[in] RTOL2
        !           141: *> \verbatim
        !           142: *>          RTOL2 is DOUBLE PRECISION
        !           143: *>           Parameters for bisection.
        !           144: *>           An interval [LEFT,RIGHT] has converged if
        !           145: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[in] SPLTOL
        !           149: *> \verbatim
        !           150: *>          SPLTOL is DOUBLE PRECISION
        !           151: *>          The threshold for splitting.
        !           152: *> \endverbatim
        !           153: *>
        !           154: *> \param[out] NSPLIT
        !           155: *> \verbatim
        !           156: *>          NSPLIT is INTEGER
        !           157: *>          The number of blocks T splits into. 1 <= NSPLIT <= N.
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[out] ISPLIT
        !           161: *> \verbatim
        !           162: *>          ISPLIT is INTEGER array, dimension (N)
        !           163: *>          The splitting points, at which T breaks up into blocks.
        !           164: *>          The first block consists of rows/columns 1 to ISPLIT(1),
        !           165: *>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
        !           166: *>          etc., and the NSPLIT-th consists of rows/columns
        !           167: *>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
        !           168: *> \endverbatim
        !           169: *>
        !           170: *> \param[out] M
        !           171: *> \verbatim
        !           172: *>          M is INTEGER
        !           173: *>          The total number of eigenvalues (of all L_i D_i L_i^T)
        !           174: *>          found.
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] W
        !           178: *> \verbatim
        !           179: *>          W is DOUBLE PRECISION array, dimension (N)
        !           180: *>          The first M elements contain the eigenvalues. The
        !           181: *>          eigenvalues of each of the blocks, L_i D_i L_i^T, are
        !           182: *>          sorted in ascending order ( DLARRE may use the
        !           183: *>          remaining N-M elements as workspace).
        !           184: *> \endverbatim
        !           185: *>
        !           186: *> \param[out] WERR
        !           187: *> \verbatim
        !           188: *>          WERR is DOUBLE PRECISION array, dimension (N)
        !           189: *>          The error bound on the corresponding eigenvalue in W.
        !           190: *> \endverbatim
        !           191: *>
        !           192: *> \param[out] WGAP
        !           193: *> \verbatim
        !           194: *>          WGAP is DOUBLE PRECISION array, dimension (N)
        !           195: *>          The separation from the right neighbor eigenvalue in W.
        !           196: *>          The gap is only with respect to the eigenvalues of the same block
        !           197: *>          as each block has its own representation tree.
        !           198: *>          Exception: at the right end of a block we store the left gap
        !           199: *> \endverbatim
        !           200: *>
        !           201: *> \param[out] IBLOCK
        !           202: *> \verbatim
        !           203: *>          IBLOCK is INTEGER array, dimension (N)
        !           204: *>          The indices of the blocks (submatrices) associated with the
        !           205: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
        !           206: *>          W(i) belongs to the first block from the top, =2 if W(i)
        !           207: *>          belongs to the second block, etc.
        !           208: *> \endverbatim
        !           209: *>
        !           210: *> \param[out] INDEXW
        !           211: *> \verbatim
        !           212: *>          INDEXW is INTEGER array, dimension (N)
        !           213: *>          The indices of the eigenvalues within each block (submatrix);
        !           214: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
        !           215: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[out] GERS
        !           219: *> \verbatim
        !           220: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
        !           221: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
        !           222: *>          is (GERS(2*i-1), GERS(2*i)).
        !           223: *> \endverbatim
        !           224: *>
        !           225: *> \param[out] PIVMIN
        !           226: *> \verbatim
        !           227: *>          PIVMIN is DOUBLE PRECISION
        !           228: *>          The minimum pivot in the Sturm sequence for T.
        !           229: *> \endverbatim
        !           230: *>
        !           231: *> \param[out] WORK
        !           232: *> \verbatim
        !           233: *>          WORK is DOUBLE PRECISION array, dimension (6*N)
        !           234: *>          Workspace.
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] IWORK
        !           238: *> \verbatim
        !           239: *>          IWORK is INTEGER array, dimension (5*N)
        !           240: *>          Workspace.
        !           241: *> \endverbatim
        !           242: *>
        !           243: *> \param[out] INFO
        !           244: *> \verbatim
        !           245: *>          INFO is INTEGER
        !           246: *>          = 0:  successful exit
        !           247: *>          > 0:  A problem occured in DLARRE.
        !           248: *>          < 0:  One of the called subroutines signaled an internal problem.
        !           249: *>                Needs inspection of the corresponding parameter IINFO
        !           250: *>                for further information.
        !           251: *>
        !           252: *>          =-1:  Problem in DLARRD.
        !           253: *>          = 2:  No base representation could be found in MAXTRY iterations.
        !           254: *>                Increasing MAXTRY and recompilation might be a remedy.
        !           255: *>          =-3:  Problem in DLARRB when computing the refined root
        !           256: *>                representation for DLASQ2.
        !           257: *>          =-4:  Problem in DLARRB when preforming bisection on the
        !           258: *>                desired part of the spectrum.
        !           259: *>          =-5:  Problem in DLASQ2.
        !           260: *>          =-6:  Problem in DLASQ2.
        !           261: *> \endverbatim
        !           262: *
        !           263: *  Authors:
        !           264: *  ========
        !           265: *
        !           266: *> \author Univ. of Tennessee 
        !           267: *> \author Univ. of California Berkeley 
        !           268: *> \author Univ. of Colorado Denver 
        !           269: *> \author NAG Ltd. 
        !           270: *
        !           271: *> \date November 2011
        !           272: *
        !           273: *> \ingroup auxOTHERauxiliary
        !           274: *
        !           275: *> \par Further Details:
        !           276: *  =====================
        !           277: *>
        !           278: *> \verbatim
        !           279: *>
        !           280: *>  The base representations are required to suffer very little
        !           281: *>  element growth and consequently define all their eigenvalues to
        !           282: *>  high relative accuracy.
        !           283: *> \endverbatim
        !           284: *
        !           285: *> \par Contributors:
        !           286: *  ==================
        !           287: *>
        !           288: *>     Beresford Parlett, University of California, Berkeley, USA \n
        !           289: *>     Jim Demmel, University of California, Berkeley, USA \n
        !           290: *>     Inderjit Dhillon, University of Texas, Austin, USA \n
        !           291: *>     Osni Marques, LBNL/NERSC, USA \n
        !           292: *>     Christof Voemel, University of California, Berkeley, USA \n
        !           293: *>
        !           294: *  =====================================================================
1.1       bertrand  295:       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
                    296:      $                    RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
                    297:      $                    W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
                    298:      $                    WORK, IWORK, INFO )
                    299: *
1.11    ! bertrand  300: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  301: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    302: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  303: *     November 2011
1.1       bertrand  304: *
                    305: *     .. Scalar Arguments ..
                    306:       CHARACTER          RANGE
                    307:       INTEGER            IL, INFO, IU, M, N, NSPLIT
                    308:       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
                    309: *     ..
                    310: *     .. Array Arguments ..
                    311:       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
                    312:      $                   INDEXW( * )
                    313:       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
                    314:      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
                    315: *     ..
                    316: *
                    317: *  =====================================================================
                    318: *
                    319: *     .. Parameters ..
                    320:       DOUBLE PRECISION   FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
                    321:      $                   MAXGROWTH, ONE, PERT, TWO, ZERO
                    322:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    323:      $                     TWO = 2.0D0, FOUR=4.0D0,
                    324:      $                     HNDRD = 100.0D0,
                    325:      $                     PERT = 8.0D0,
                    326:      $                     HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
                    327:      $                     MAXGROWTH = 64.0D0, FUDGE = 2.0D0 )
                    328:       INTEGER            MAXTRY, ALLRNG, INDRNG, VALRNG
                    329:       PARAMETER          ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2,
                    330:      $                     VALRNG = 3 )
                    331: *     ..
                    332: *     .. Local Scalars ..
                    333:       LOGICAL            FORCEB, NOREP, USEDQD
                    334:       INTEGER            CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
                    335:      $                   IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
                    336:      $                   WBEGIN, WEND
                    337:       DOUBLE PRECISION   AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
                    338:      $                   EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
                    339:      $                   RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
                    340:      $                   TAU, TMP, TMP1
                    341: 
                    342: 
                    343: *     ..
                    344: *     .. Local Arrays ..
                    345:       INTEGER            ISEED( 4 )
                    346: *     ..
                    347: *     .. External Functions ..
                    348:       LOGICAL            LSAME
                    349:       DOUBLE PRECISION            DLAMCH
                    350:       EXTERNAL           DLAMCH, LSAME
                    351: 
                    352: *     ..
                    353: *     .. External Subroutines ..
                    354:       EXTERNAL           DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, DLARRD,
                    355:      $                   DLASQ2
                    356: *     ..
                    357: *     .. Intrinsic Functions ..
                    358:       INTRINSIC          ABS, MAX, MIN
                    359: 
                    360: *     ..
                    361: *     .. Executable Statements ..
                    362: *
                    363: 
                    364:       INFO = 0
                    365: 
                    366: *
                    367: *     Decode RANGE
                    368: *
                    369:       IF( LSAME( RANGE, 'A' ) ) THEN
                    370:          IRANGE = ALLRNG
                    371:       ELSE IF( LSAME( RANGE, 'V' ) ) THEN
                    372:          IRANGE = VALRNG
                    373:       ELSE IF( LSAME( RANGE, 'I' ) ) THEN
                    374:          IRANGE = INDRNG
                    375:       END IF
                    376: 
                    377:       M = 0
                    378: 
                    379: *     Get machine constants
                    380:       SAFMIN = DLAMCH( 'S' )
                    381:       EPS = DLAMCH( 'P' )
                    382: 
                    383: *     Set parameters
                    384:       RTL = SQRT(EPS)
                    385:       BSRTOL = SQRT(EPS)
                    386: 
                    387: *     Treat case of 1x1 matrix for quick return
                    388:       IF( N.EQ.1 ) THEN
                    389:          IF( (IRANGE.EQ.ALLRNG).OR.
                    390:      $       ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
                    391:      $       ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
                    392:             M = 1
                    393:             W(1) = D(1)
                    394: *           The computation error of the eigenvalue is zero
                    395:             WERR(1) = ZERO
                    396:             WGAP(1) = ZERO
                    397:             IBLOCK( 1 ) = 1
                    398:             INDEXW( 1 ) = 1
                    399:             GERS(1) = D( 1 )
                    400:             GERS(2) = D( 1 )
                    401:          ENDIF
                    402: *        store the shift for the initial RRR, which is zero in this case
                    403:          E(1) = ZERO
                    404:          RETURN
                    405:       END IF
                    406: 
                    407: *     General case: tridiagonal matrix of order > 1
                    408: *
                    409: *     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
                    410: *     Compute maximum off-diagonal entry and pivmin.
                    411:       GL = D(1)
                    412:       GU = D(1)
                    413:       EOLD = ZERO
                    414:       EMAX = ZERO
                    415:       E(N) = ZERO
                    416:       DO 5 I = 1,N
                    417:          WERR(I) = ZERO
                    418:          WGAP(I) = ZERO
                    419:          EABS = ABS( E(I) )
                    420:          IF( EABS .GE. EMAX ) THEN
                    421:             EMAX = EABS
                    422:          END IF
                    423:          TMP1 = EABS + EOLD
                    424:          GERS( 2*I-1) = D(I) - TMP1
                    425:          GL =  MIN( GL, GERS( 2*I - 1))
                    426:          GERS( 2*I ) = D(I) + TMP1
                    427:          GU = MAX( GU, GERS(2*I) )
                    428:          EOLD  = EABS
                    429:  5    CONTINUE
                    430: *     The minimum pivot allowed in the Sturm sequence for T
                    431:       PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
                    432: *     Compute spectral diameter. The Gerschgorin bounds give an
                    433: *     estimate that is wrong by at most a factor of SQRT(2)
                    434:       SPDIAM = GU - GL
                    435: 
                    436: *     Compute splitting points
                    437:       CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM,
                    438:      $                    NSPLIT, ISPLIT, IINFO )
                    439: 
                    440: *     Can force use of bisection instead of faster DQDS.
                    441: *     Option left in the code for future multisection work.
                    442:       FORCEB = .FALSE.
                    443: 
                    444: *     Initialize USEDQD, DQDS should be used for ALLRNG unless someone
                    445: *     explicitly wants bisection.
                    446:       USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB))
                    447: 
                    448:       IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN
                    449: *        Set interval [VL,VU] that contains all eigenvalues
                    450:          VL = GL
                    451:          VU = GU
                    452:       ELSE
                    453: *        We call DLARRD to find crude approximations to the eigenvalues
                    454: *        in the desired range. In case IRANGE = INDRNG, we also obtain the
                    455: *        interval (VL,VU] that contains all the wanted eigenvalues.
                    456: *        An interval [LEFT,RIGHT] has converged if
                    457: *        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
                    458: *        DLARRD needs a WORK of size 4*N, IWORK of size 3*N
                    459:          CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
                    460:      $                    BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
                    461:      $                    MM, W, WERR, VL, VU, IBLOCK, INDEXW,
                    462:      $                    WORK, IWORK, IINFO )
                    463:          IF( IINFO.NE.0 ) THEN
                    464:             INFO = -1
                    465:             RETURN
                    466:          ENDIF
                    467: *        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
                    468:          DO 14 I = MM+1,N
                    469:             W( I ) = ZERO
                    470:             WERR( I ) = ZERO
                    471:             IBLOCK( I ) = 0
                    472:             INDEXW( I ) = 0
                    473:  14      CONTINUE
                    474:       END IF
                    475: 
                    476: 
                    477: ***
                    478: *     Loop over unreduced blocks
                    479:       IBEGIN = 1
                    480:       WBEGIN = 1
                    481:       DO 170 JBLK = 1, NSPLIT
                    482:          IEND = ISPLIT( JBLK )
                    483:          IN = IEND - IBEGIN + 1
                    484: 
                    485: *        1 X 1 block
                    486:          IF( IN.EQ.1 ) THEN
                    487:             IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND.
                    488:      $         ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
                    489:      $        .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK))
                    490:      $        ) THEN
                    491:                M = M + 1
                    492:                W( M ) = D( IBEGIN )
                    493:                WERR(M) = ZERO
                    494: *              The gap for a single block doesn't matter for the later
                    495: *              algorithm and is assigned an arbitrary large value
                    496:                WGAP(M) = ZERO
                    497:                IBLOCK( M ) = JBLK
                    498:                INDEXW( M ) = 1
                    499:                WBEGIN = WBEGIN + 1
                    500:             ENDIF
                    501: *           E( IEND ) holds the shift for the initial RRR
                    502:             E( IEND ) = ZERO
                    503:             IBEGIN = IEND + 1
                    504:             GO TO 170
                    505:          END IF
                    506: *
                    507: *        Blocks of size larger than 1x1
                    508: *
                    509: *        E( IEND ) will hold the shift for the initial RRR, for now set it =0
                    510:          E( IEND ) = ZERO
                    511: *
                    512: *        Find local outer bounds GL,GU for the block
                    513:          GL = D(IBEGIN)
                    514:          GU = D(IBEGIN)
                    515:          DO 15 I = IBEGIN , IEND
                    516:             GL = MIN( GERS( 2*I-1 ), GL )
                    517:             GU = MAX( GERS( 2*I ), GU )
                    518:  15      CONTINUE
                    519:          SPDIAM = GU - GL
                    520: 
                    521:          IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
                    522: *           Count the number of eigenvalues in the current block.
                    523:             MB = 0
                    524:             DO 20 I = WBEGIN,MM
                    525:                IF( IBLOCK(I).EQ.JBLK ) THEN
                    526:                   MB = MB+1
                    527:                ELSE
                    528:                   GOTO 21
                    529:                ENDIF
                    530:  20         CONTINUE
                    531:  21         CONTINUE
                    532: 
                    533:             IF( MB.EQ.0) THEN
                    534: *              No eigenvalue in the current block lies in the desired range
                    535: *              E( IEND ) holds the shift for the initial RRR
                    536:                E( IEND ) = ZERO
                    537:                IBEGIN = IEND + 1
                    538:                GO TO 170
                    539:             ELSE
                    540: 
                    541: *              Decide whether dqds or bisection is more efficient
                    542:                USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
                    543:                WEND = WBEGIN + MB - 1
                    544: *              Calculate gaps for the current block
                    545: *              In later stages, when representations for individual
                    546: *              eigenvalues are different, we use SIGMA = E( IEND ).
                    547:                SIGMA = ZERO
                    548:                DO 30 I = WBEGIN, WEND - 1
                    549:                   WGAP( I ) = MAX( ZERO,
                    550:      $                        W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
                    551:  30            CONTINUE
                    552:                WGAP( WEND ) = MAX( ZERO,
                    553:      $                     VU - SIGMA - (W( WEND )+WERR( WEND )))
                    554: *              Find local index of the first and last desired evalue.
                    555:                INDL = INDEXW(WBEGIN)
                    556:                INDU = INDEXW( WEND )
                    557:             ENDIF
                    558:          ENDIF
                    559:          IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
                    560: *           Case of DQDS
                    561: *           Find approximations to the extremal eigenvalues of the block
                    562:             CALL DLARRK( IN, 1, GL, GU, D(IBEGIN),
                    563:      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
                    564:             IF( IINFO.NE.0 ) THEN
                    565:                INFO = -1
                    566:                RETURN
                    567:             ENDIF
                    568:             ISLEFT = MAX(GL, TMP - TMP1
                    569:      $               - HNDRD * EPS* ABS(TMP - TMP1))
                    570: 
                    571:             CALL DLARRK( IN, IN, GL, GU, D(IBEGIN),
                    572:      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
                    573:             IF( IINFO.NE.0 ) THEN
                    574:                INFO = -1
                    575:                RETURN
                    576:             ENDIF
                    577:             ISRGHT = MIN(GU, TMP + TMP1
                    578:      $                 + HNDRD * EPS * ABS(TMP + TMP1))
                    579: *           Improve the estimate of the spectral diameter
                    580:             SPDIAM = ISRGHT - ISLEFT
                    581:          ELSE
                    582: *           Case of bisection
                    583: *           Find approximations to the wanted extremal eigenvalues
                    584:             ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
                    585:      $                  - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
                    586:             ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
                    587:      $                  + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
                    588:          ENDIF
                    589: 
                    590: 
                    591: *        Decide whether the base representation for the current block
                    592: *        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
                    593: *        should be on the left or the right end of the current block.
                    594: *        The strategy is to shift to the end which is "more populated"
                    595: *        Furthermore, decide whether to use DQDS for the computation of
                    596: *        the eigenvalue approximations at the end of DLARRE or bisection.
                    597: *        dqds is chosen if all eigenvalues are desired or the number of
                    598: *        eigenvalues to be computed is large compared to the blocksize.
                    599:          IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    600: *           If all the eigenvalues have to be computed, we use dqd
                    601:             USEDQD = .TRUE.
                    602: *           INDL is the local index of the first eigenvalue to compute
                    603:             INDL = 1
                    604:             INDU = IN
                    605: *           MB =  number of eigenvalues to compute
                    606:             MB = IN
                    607:             WEND = WBEGIN + MB - 1
                    608: *           Define 1/4 and 3/4 points of the spectrum
                    609:             S1 = ISLEFT + FOURTH * SPDIAM
                    610:             S2 = ISRGHT - FOURTH * SPDIAM
                    611:          ELSE
                    612: *           DLARRD has computed IBLOCK and INDEXW for each eigenvalue
                    613: *           approximation.
                    614: *           choose sigma
                    615:             IF( USEDQD ) THEN
                    616:                S1 = ISLEFT + FOURTH * SPDIAM
                    617:                S2 = ISRGHT - FOURTH * SPDIAM
                    618:             ELSE
                    619:                TMP = MIN(ISRGHT,VU) -  MAX(ISLEFT,VL)
                    620:                S1 =  MAX(ISLEFT,VL) + FOURTH * TMP
                    621:                S2 =  MIN(ISRGHT,VU) - FOURTH * TMP
                    622:             ENDIF
                    623:          ENDIF
                    624: 
                    625: *        Compute the negcount at the 1/4 and 3/4 points
                    626:          IF(MB.GT.1) THEN
                    627:             CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN),
                    628:      $                    E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
                    629:          ENDIF
                    630: 
                    631:          IF(MB.EQ.1) THEN
                    632:             SIGMA = GL
                    633:             SGNDEF = ONE
                    634:          ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
                    635:             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    636:                SIGMA = MAX(ISLEFT,GL)
                    637:             ELSEIF( USEDQD ) THEN
                    638: *              use Gerschgorin bound as shift to get pos def matrix
                    639: *              for dqds
                    640:                SIGMA = ISLEFT
                    641:             ELSE
                    642: *              use approximation of the first desired eigenvalue of the
                    643: *              block as shift
                    644:                SIGMA = MAX(ISLEFT,VL)
                    645:             ENDIF
                    646:             SGNDEF = ONE
                    647:          ELSE
                    648:             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
                    649:                SIGMA = MIN(ISRGHT,GU)
                    650:             ELSEIF( USEDQD ) THEN
                    651: *              use Gerschgorin bound as shift to get neg def matrix
                    652: *              for dqds
                    653:                SIGMA = ISRGHT
                    654:             ELSE
                    655: *              use approximation of the first desired eigenvalue of the
                    656: *              block as shift
                    657:                SIGMA = MIN(ISRGHT,VU)
                    658:             ENDIF
                    659:             SGNDEF = -ONE
                    660:          ENDIF
                    661: 
                    662: 
                    663: *        An initial SIGMA has been chosen that will be used for computing
                    664: *        T - SIGMA I = L D L^T
                    665: *        Define the increment TAU of the shift in case the initial shift
                    666: *        needs to be refined to obtain a factorization with not too much
                    667: *        element growth.
                    668:          IF( USEDQD ) THEN
                    669: *           The initial SIGMA was to the outer end of the spectrum
                    670: *           the matrix is definite and we need not retreat.
                    671:             TAU = SPDIAM*EPS*N + TWO*PIVMIN
1.10      bertrand  672:             TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) )
1.1       bertrand  673:          ELSE
                    674:             IF(MB.GT.1) THEN
                    675:                CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
                    676:                AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN))
                    677:                IF( SGNDEF.EQ.ONE ) THEN
                    678:                   TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
                    679:                   TAU = MAX(TAU,WERR(WBEGIN))
                    680:                ELSE
                    681:                   TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
                    682:                   TAU = MAX(TAU,WERR(WEND))
                    683:                ENDIF
                    684:             ELSE
                    685:                TAU = WERR(WBEGIN)
                    686:             ENDIF
                    687:          ENDIF
                    688: *
                    689:          DO 80 IDUM = 1, MAXTRY
                    690: *           Compute L D L^T factorization of tridiagonal matrix T - sigma I.
                    691: *           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
                    692: *           pivots in WORK(2*IN+1:3*IN)
                    693:             DPIVOT = D( IBEGIN ) - SIGMA
                    694:             WORK( 1 ) = DPIVOT
                    695:             DMAX = ABS( WORK(1) )
                    696:             J = IBEGIN
                    697:             DO 70 I = 1, IN - 1
                    698:                WORK( 2*IN+I ) = ONE / WORK( I )
                    699:                TMP = E( J )*WORK( 2*IN+I )
                    700:                WORK( IN+I ) = TMP
                    701:                DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
                    702:                WORK( I+1 ) = DPIVOT
                    703:                DMAX = MAX( DMAX, ABS(DPIVOT) )
                    704:                J = J + 1
                    705:  70         CONTINUE
                    706: *           check for element growth
                    707:             IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
                    708:                NOREP = .TRUE.
                    709:             ELSE
                    710:                NOREP = .FALSE.
                    711:             ENDIF
                    712:             IF( USEDQD .AND. .NOT.NOREP ) THEN
                    713: *              Ensure the definiteness of the representation
                    714: *              All entries of D (of L D L^T) must have the same sign
                    715:                DO 71 I = 1, IN
                    716:                   TMP = SGNDEF*WORK( I )
                    717:                   IF( TMP.LT.ZERO ) NOREP = .TRUE.
                    718:  71            CONTINUE
                    719:             ENDIF
                    720:             IF(NOREP) THEN
                    721: *              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
                    722: *              shift which makes the matrix definite. So we should end up
                    723: *              here really only in the case of IRANGE = VALRNG or INDRNG.
                    724:                IF( IDUM.EQ.MAXTRY-1 ) THEN
                    725:                   IF( SGNDEF.EQ.ONE ) THEN
                    726: *                    The fudged Gerschgorin shift should succeed
                    727:                      SIGMA =
                    728:      $                    GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
                    729:                   ELSE
                    730:                      SIGMA =
                    731:      $                    GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
                    732:                   END IF
                    733:                ELSE
                    734:                   SIGMA = SIGMA - SGNDEF * TAU
                    735:                   TAU = TWO * TAU
                    736:                END IF
                    737:             ELSE
                    738: *              an initial RRR is found
                    739:                GO TO 83
                    740:             END IF
                    741:  80      CONTINUE
                    742: *        if the program reaches this point, no base representation could be
                    743: *        found in MAXTRY iterations.
                    744:          INFO = 2
                    745:          RETURN
                    746: 
                    747:  83      CONTINUE
                    748: *        At this point, we have found an initial base representation
                    749: *        T - SIGMA I = L D L^T with not too much element growth.
                    750: *        Store the shift.
                    751:          E( IEND ) = SIGMA
                    752: *        Store D and L.
                    753:          CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
                    754:          CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
                    755: 
                    756: 
                    757:          IF(MB.GT.1 ) THEN
                    758: *
                    759: *           Perturb each entry of the base representation by a small
                    760: *           (but random) relative amount to overcome difficulties with
                    761: *           glued matrices.
                    762: *
                    763:             DO 122 I = 1, 4
                    764:                ISEED( I ) = 1
                    765:  122        CONTINUE
                    766: 
                    767:             CALL DLARNV(2, ISEED, 2*IN-1, WORK(1))
                    768:             DO 125 I = 1,IN-1
                    769:                D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
                    770:                E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
                    771:  125        CONTINUE
                    772:             D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
                    773: *
                    774:          ENDIF
                    775: *
                    776: *        Don't update the Gerschgorin intervals because keeping track
                    777: *        of the updates would be too much work in DLARRV.
                    778: *        We update W instead and use it to locate the proper Gerschgorin
                    779: *        intervals.
                    780: 
                    781: *        Compute the required eigenvalues of L D L' by bisection or dqds
                    782:          IF ( .NOT.USEDQD ) THEN
                    783: *           If DLARRD has been used, shift the eigenvalue approximations
                    784: *           according to their representation. This is necessary for
                    785: *           a uniform DLARRV since dqds computes eigenvalues of the
                    786: *           shifted representation. In DLARRV, W will always hold the
                    787: *           UNshifted eigenvalue approximation.
                    788:             DO 134 J=WBEGIN,WEND
                    789:                W(J) = W(J) - SIGMA
                    790:                WERR(J) = WERR(J) + ABS(W(J)) * EPS
                    791:  134        CONTINUE
                    792: *           call DLARRB to reduce eigenvalue error of the approximations
                    793: *           from DLARRD
                    794:             DO 135 I = IBEGIN, IEND-1
                    795:                WORK( I ) = D( I ) * E( I )**2
                    796:  135        CONTINUE
                    797: *           use bisection to find EV from INDL to INDU
                    798:             CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN),
                    799:      $                  INDL, INDU, RTOL1, RTOL2, INDL-1,
                    800:      $                  W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
                    801:      $                  WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
                    802:      $                  IN, IINFO )
                    803:             IF( IINFO .NE. 0 ) THEN
                    804:                INFO = -4
                    805:                RETURN
                    806:             END IF
                    807: *           DLARRB computes all gaps correctly except for the last one
                    808: *           Record distance to VU/GU
                    809:             WGAP( WEND ) = MAX( ZERO,
                    810:      $           ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
                    811:             DO 138 I = INDL, INDU
                    812:                M = M + 1
                    813:                IBLOCK(M) = JBLK
                    814:                INDEXW(M) = I
                    815:  138        CONTINUE
                    816:          ELSE
                    817: *           Call dqds to get all eigs (and then possibly delete unwanted
                    818: *           eigenvalues).
                    819: *           Note that dqds finds the eigenvalues of the L D L^T representation
                    820: *           of T to high relative accuracy. High relative accuracy
                    821: *           might be lost when the shift of the RRR is subtracted to obtain
                    822: *           the eigenvalues of T. However, T is not guaranteed to define its
                    823: *           eigenvalues to high relative accuracy anyway.
                    824: *           Set RTOL to the order of the tolerance used in DLASQ2
                    825: *           This is an ESTIMATED error, the worst case bound is 4*N*EPS
                    826: *           which is usually too large and requires unnecessary work to be
                    827: *           done by bisection when computing the eigenvectors
                    828:             RTOL = LOG(DBLE(IN)) * FOUR * EPS
                    829:             J = IBEGIN
                    830:             DO 140 I = 1, IN - 1
                    831:                WORK( 2*I-1 ) = ABS( D( J ) )
                    832:                WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
                    833:                J = J + 1
                    834:   140       CONTINUE
                    835:             WORK( 2*IN-1 ) = ABS( D( IEND ) )
                    836:             WORK( 2*IN ) = ZERO
                    837:             CALL DLASQ2( IN, WORK, IINFO )
                    838:             IF( IINFO .NE. 0 ) THEN
                    839: *              If IINFO = -5 then an index is part of a tight cluster
                    840: *              and should be changed. The index is in IWORK(1) and the
                    841: *              gap is in WORK(N+1)
                    842:                INFO = -5
                    843:                RETURN
                    844:             ELSE
                    845: *              Test that all eigenvalues are positive as expected
                    846:                DO 149 I = 1, IN
                    847:                   IF( WORK( I ).LT.ZERO ) THEN
                    848:                      INFO = -6
                    849:                      RETURN
                    850:                   ENDIF
                    851:  149           CONTINUE
                    852:             END IF
                    853:             IF( SGNDEF.GT.ZERO ) THEN
                    854:                DO 150 I = INDL, INDU
                    855:                   M = M + 1
                    856:                   W( M ) = WORK( IN-I+1 )
                    857:                   IBLOCK( M ) = JBLK
                    858:                   INDEXW( M ) = I
                    859:  150           CONTINUE
                    860:             ELSE
                    861:                DO 160 I = INDL, INDU
                    862:                   M = M + 1
                    863:                   W( M ) = -WORK( I )
                    864:                   IBLOCK( M ) = JBLK
                    865:                   INDEXW( M ) = I
                    866:  160           CONTINUE
                    867:             END IF
                    868: 
                    869:             DO 165 I = M - MB + 1, M
                    870: *              the value of RTOL below should be the tolerance in DLASQ2
                    871:                WERR( I ) = RTOL * ABS( W(I) )
                    872:  165        CONTINUE
                    873:             DO 166 I = M - MB + 1, M - 1
                    874: *              compute the right gap between the intervals
                    875:                WGAP( I ) = MAX( ZERO,
                    876:      $                          W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
                    877:  166        CONTINUE
                    878:             WGAP( M ) = MAX( ZERO,
                    879:      $           ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
                    880:          END IF
                    881: *        proceed with next block
                    882:          IBEGIN = IEND + 1
                    883:          WBEGIN = WEND + 1
                    884:  170  CONTINUE
                    885: *
                    886: 
                    887:       RETURN
                    888: *
                    889: *     end of DLARRE
                    890: *
                    891:       END

CVSweb interface <joel.bertrand@systella.fr>