File:  [local] / rpl / lapack / lapack / dlarrb.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:51 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
    2:      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
    3:      $                   PIVMIN, SPDIAM, TWIST, INFO )
    4: *
    5: *  -- LAPACK auxiliary routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
   12:       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            IWORK( * )
   16:       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
   17:      $                   WERR( * ), WGAP( * ), WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  Given the relatively robust representation(RRR) L D L^T, DLARRB
   24: *  does "limited" bisection to refine the eigenvalues of L D L^T,
   25: *  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
   26: *  guesses for these eigenvalues are input in W, the corresponding estimate
   27: *  of the error in these guesses and their gaps are input in WERR
   28: *  and WGAP, respectively. During bisection, intervals
   29: *  [left, right] are maintained by storing their mid-points and
   30: *  semi-widths in the arrays W and WERR respectively.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  N       (input) INTEGER
   36: *          The order of the matrix.
   37: *
   38: *  D       (input) DOUBLE PRECISION array, dimension (N)
   39: *          The N diagonal elements of the diagonal matrix D.
   40: *
   41: *  LLD     (input) DOUBLE PRECISION array, dimension (N-1)
   42: *          The (N-1) elements L(i)*L(i)*D(i).
   43: *
   44: *  IFIRST  (input) INTEGER
   45: *          The index of the first eigenvalue to be computed.
   46: *
   47: *  ILAST   (input) INTEGER
   48: *          The index of the last eigenvalue to be computed.
   49: *
   50: *  RTOL1   (input) DOUBLE PRECISION
   51: *  RTOL2   (input) DOUBLE PRECISION
   52: *          Tolerance for the convergence of the bisection intervals.
   53: *          An interval [LEFT,RIGHT] has converged if
   54: *          RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
   55: *          where GAP is the (estimated) distance to the nearest
   56: *          eigenvalue.
   57: *
   58: *  OFFSET  (input) INTEGER
   59: *          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
   60: *          through ILAST-OFFSET elements of these arrays are to be used.
   61: *
   62: *  W       (input/output) DOUBLE PRECISION array, dimension (N)
   63: *          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
   64: *          estimates of the eigenvalues of L D L^T indexed IFIRST throug
   65: *          ILAST.
   66: *          On output, these estimates are refined.
   67: *
   68: *  WGAP    (input/output) DOUBLE PRECISION array, dimension (N-1)
   69: *          On input, the (estimated) gaps between consecutive
   70: *          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
   71: *          eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
   72: *          then WGAP(IFIRST-OFFSET) must be set to ZERO.
   73: *          On output, these gaps are refined.
   74: *
   75: *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
   76: *          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
   77: *          the errors in the estimates of the corresponding elements in W.
   78: *          On output, these errors are refined.
   79: *
   80: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
   81: *          Workspace.
   82: *
   83: *  IWORK   (workspace) INTEGER array, dimension (2*N)
   84: *          Workspace.
   85: *
   86: *  PIVMIN  (input) DOUBLE PRECISION
   87: *          The minimum pivot in the Sturm sequence.
   88: *
   89: *  SPDIAM  (input) DOUBLE PRECISION
   90: *          The spectral diameter of the matrix.
   91: *
   92: *  TWIST   (input) INTEGER
   93: *          The twist index for the twisted factorization that is used
   94: *          for the negcount.
   95: *          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
   96: *          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
   97: *          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
   98: *
   99: *  INFO    (output) INTEGER
  100: *          Error flag.
  101: *
  102: *  Further Details
  103: *  ===============
  104: *
  105: *  Based on contributions by
  106: *     Beresford Parlett, University of California, Berkeley, USA
  107: *     Jim Demmel, University of California, Berkeley, USA
  108: *     Inderjit Dhillon, University of Texas, Austin, USA
  109: *     Osni Marques, LBNL/NERSC, USA
  110: *     Christof Voemel, University of California, Berkeley, USA
  111: *
  112: *  =====================================================================
  113: *
  114: *     .. Parameters ..
  115:       DOUBLE PRECISION   ZERO, TWO, HALF
  116:       PARAMETER        ( ZERO = 0.0D0, TWO = 2.0D0,
  117:      $                   HALF = 0.5D0 )
  118:       INTEGER   MAXITR
  119: *     ..
  120: *     .. Local Scalars ..
  121:       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
  122:      $                   OLNINT, PREV, R
  123:       DOUBLE PRECISION   BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
  124:      $                   RGAP, RIGHT, TMP, WIDTH
  125: *     ..
  126: *     .. External Functions ..
  127:       INTEGER            DLANEG
  128:       EXTERNAL           DLANEG
  129: *
  130: *     ..
  131: *     .. Intrinsic Functions ..
  132:       INTRINSIC          ABS, MAX, MIN
  133: *     ..
  134: *     .. Executable Statements ..
  135: *
  136:       INFO = 0
  137: *
  138:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
  139:      $           LOG( TWO ) ) + 2
  140:       MNWDTH = TWO * PIVMIN
  141: *
  142:       R = TWIST
  143:       IF((R.LT.1).OR.(R.GT.N)) R = N
  144: *
  145: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
  146: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
  147: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
  148: *     for an unconverged interval is set to the index of the next unconverged
  149: *     interval, and is -1 or 0 for a converged interval. Thus a linked
  150: *     list of unconverged intervals is set up.
  151: *
  152:       I1 = IFIRST
  153: *     The number of unconverged intervals
  154:       NINT = 0
  155: *     The last unconverged interval found
  156:       PREV = 0
  157: 
  158:       RGAP = WGAP( I1-OFFSET )
  159:       DO 75 I = I1, ILAST
  160:          K = 2*I
  161:          II = I - OFFSET
  162:          LEFT = W( II ) - WERR( II )
  163:          RIGHT = W( II ) + WERR( II )
  164:          LGAP = RGAP
  165:          RGAP = WGAP( II )
  166:          GAP = MIN( LGAP, RGAP )
  167: 
  168: *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
  169: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
  170: *
  171: *        Do while( NEGCNT(LEFT).GT.I-1 )
  172: *
  173:          BACK = WERR( II )
  174:  20      CONTINUE
  175:          NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
  176:          IF( NEGCNT.GT.I-1 ) THEN
  177:             LEFT = LEFT - BACK
  178:             BACK = TWO*BACK
  179:             GO TO 20
  180:          END IF
  181: *
  182: *        Do while( NEGCNT(RIGHT).LT.I )
  183: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
  184: *
  185:          BACK = WERR( II )
  186:  50      CONTINUE
  187: 
  188:          NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
  189:           IF( NEGCNT.LT.I ) THEN
  190:              RIGHT = RIGHT + BACK
  191:              BACK = TWO*BACK
  192:              GO TO 50
  193:           END IF
  194:          WIDTH = HALF*ABS( LEFT - RIGHT )
  195:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  196:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
  197:          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
  198: *           This interval has already converged and does not need refinement.
  199: *           (Note that the gaps might change through refining the
  200: *            eigenvalues, however, they can only get bigger.)
  201: *           Remove it from the list.
  202:             IWORK( K-1 ) = -1
  203: *           Make sure that I1 always points to the first unconverged interval
  204:             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
  205:             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
  206:          ELSE
  207: *           unconverged interval found
  208:             PREV = I
  209:             NINT = NINT + 1
  210:             IWORK( K-1 ) = I + 1
  211:             IWORK( K ) = NEGCNT
  212:          END IF
  213:          WORK( K-1 ) = LEFT
  214:          WORK( K ) = RIGHT
  215:  75   CONTINUE
  216: 
  217: *
  218: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
  219: *     and while (ITER.LT.MAXITR)
  220: *
  221:       ITER = 0
  222:  80   CONTINUE
  223:       PREV = I1 - 1
  224:       I = I1
  225:       OLNINT = NINT
  226: 
  227:       DO 100 IP = 1, OLNINT
  228:          K = 2*I
  229:          II = I - OFFSET
  230:          RGAP = WGAP( II )
  231:          LGAP = RGAP
  232:          IF(II.GT.1) LGAP = WGAP( II-1 )
  233:          GAP = MIN( LGAP, RGAP )
  234:          NEXT = IWORK( K-1 )
  235:          LEFT = WORK( K-1 )
  236:          RIGHT = WORK( K )
  237:          MID = HALF*( LEFT + RIGHT )
  238: 
  239: *        semiwidth of interval
  240:          WIDTH = RIGHT - MID
  241:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
  242:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
  243:          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
  244:      $       ( ITER.EQ.MAXITR ) )THEN
  245: *           reduce number of unconverged intervals
  246:             NINT = NINT - 1
  247: *           Mark interval as converged.
  248:             IWORK( K-1 ) = 0
  249:             IF( I1.EQ.I ) THEN
  250:                I1 = NEXT
  251:             ELSE
  252: *              Prev holds the last unconverged interval previously examined
  253:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
  254:             END IF
  255:             I = NEXT
  256:             GO TO 100
  257:          END IF
  258:          PREV = I
  259: *
  260: *        Perform one bisection step
  261: *
  262:          NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
  263:          IF( NEGCNT.LE.I-1 ) THEN
  264:             WORK( K-1 ) = MID
  265:          ELSE
  266:             WORK( K ) = MID
  267:          END IF
  268:          I = NEXT
  269:  100  CONTINUE
  270:       ITER = ITER + 1
  271: *     do another loop if there are still unconverged intervals
  272: *     However, in the last iteration, all intervals are accepted
  273: *     since this is the best we can do.
  274:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
  275: *
  276: *
  277: *     At this point, all the intervals have converged
  278:       DO 110 I = IFIRST, ILAST
  279:          K = 2*I
  280:          II = I - OFFSET
  281: *        All intervals marked by '0' have been refined.
  282:          IF( IWORK( K-1 ).EQ.0 ) THEN
  283:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
  284:             WERR( II ) = WORK( K ) - W( II )
  285:          END IF
  286:  110  CONTINUE
  287: *
  288:       DO 111 I = IFIRST+1, ILAST
  289:          K = 2*I
  290:          II = I - OFFSET
  291:          WGAP( II-1 ) = MAX( ZERO,
  292:      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
  293:  111  CONTINUE
  294: 
  295:       RETURN
  296: *
  297: *     End of DLARRB
  298: *
  299:       END

CVSweb interface <joel.bertrand@systella.fr>