Annotation of rpl/lapack/lapack/dlarrb.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
                      2:      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
                      3:      $                   PIVMIN, SPDIAM, TWIST, INFO )
                      4: *
                      5: *  -- LAPACK auxiliary routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
                     12:       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       INTEGER            IWORK( * )
                     16:       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
                     17:      $                   WERR( * ), WGAP( * ), WORK( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  Given the relatively robust representation(RRR) L D L^T, DLARRB
                     24: *  does "limited" bisection to refine the eigenvalues of L D L^T,
                     25: *  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
                     26: *  guesses for these eigenvalues are input in W, the corresponding estimate
                     27: *  of the error in these guesses and their gaps are input in WERR
                     28: *  and WGAP, respectively. During bisection, intervals
                     29: *  [left, right] are maintained by storing their mid-points and
                     30: *  semi-widths in the arrays W and WERR respectively.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  N       (input) INTEGER
                     36: *          The order of the matrix.
                     37: *
                     38: *  D       (input) DOUBLE PRECISION array, dimension (N)
                     39: *          The N diagonal elements of the diagonal matrix D.
                     40: *
                     41: *  LLD     (input) DOUBLE PRECISION array, dimension (N-1)
                     42: *          The (N-1) elements L(i)*L(i)*D(i).
                     43: *
                     44: *  IFIRST  (input) INTEGER
                     45: *          The index of the first eigenvalue to be computed.
                     46: *
                     47: *  ILAST   (input) INTEGER
                     48: *          The index of the last eigenvalue to be computed.
                     49: *
                     50: *  RTOL1   (input) DOUBLE PRECISION
                     51: *  RTOL2   (input) DOUBLE PRECISION
                     52: *          Tolerance for the convergence of the bisection intervals.
                     53: *          An interval [LEFT,RIGHT] has converged if
                     54: *          RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
                     55: *          where GAP is the (estimated) distance to the nearest
                     56: *          eigenvalue.
                     57: *
                     58: *  OFFSET  (input) INTEGER
                     59: *          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
                     60: *          through ILAST-OFFSET elements of these arrays are to be used.
                     61: *
                     62: *  W       (input/output) DOUBLE PRECISION array, dimension (N)
                     63: *          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
                     64: *          estimates of the eigenvalues of L D L^T indexed IFIRST throug
                     65: *          ILAST.
                     66: *          On output, these estimates are refined.
                     67: *
                     68: *  WGAP    (input/output) DOUBLE PRECISION array, dimension (N-1)
                     69: *          On input, the (estimated) gaps between consecutive
                     70: *          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
                     71: *          eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
                     72: *          then WGAP(IFIRST-OFFSET) must be set to ZERO.
                     73: *          On output, these gaps are refined.
                     74: *
                     75: *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
                     76: *          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
                     77: *          the errors in the estimates of the corresponding elements in W.
                     78: *          On output, these errors are refined.
                     79: *
                     80: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
                     81: *          Workspace.
                     82: *
                     83: *  IWORK   (workspace) INTEGER array, dimension (2*N)
                     84: *          Workspace.
                     85: *
                     86: *  PIVMIN  (input) DOUBLE PRECISION
                     87: *          The minimum pivot in the Sturm sequence.
                     88: *
                     89: *  SPDIAM  (input) DOUBLE PRECISION
                     90: *          The spectral diameter of the matrix.
                     91: *
                     92: *  TWIST   (input) INTEGER
                     93: *          The twist index for the twisted factorization that is used
                     94: *          for the negcount.
                     95: *          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
                     96: *          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
                     97: *          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
                     98: *
                     99: *  INFO    (output) INTEGER
                    100: *          Error flag.
                    101: *
                    102: *  Further Details
                    103: *  ===============
                    104: *
                    105: *  Based on contributions by
                    106: *     Beresford Parlett, University of California, Berkeley, USA
                    107: *     Jim Demmel, University of California, Berkeley, USA
                    108: *     Inderjit Dhillon, University of Texas, Austin, USA
                    109: *     Osni Marques, LBNL/NERSC, USA
                    110: *     Christof Voemel, University of California, Berkeley, USA
                    111: *
                    112: *  =====================================================================
                    113: *
                    114: *     .. Parameters ..
                    115:       DOUBLE PRECISION   ZERO, TWO, HALF
                    116:       PARAMETER        ( ZERO = 0.0D0, TWO = 2.0D0,
                    117:      $                   HALF = 0.5D0 )
                    118:       INTEGER   MAXITR
                    119: *     ..
                    120: *     .. Local Scalars ..
                    121:       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
                    122:      $                   OLNINT, PREV, R
                    123:       DOUBLE PRECISION   BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
                    124:      $                   RGAP, RIGHT, TMP, WIDTH
                    125: *     ..
                    126: *     .. External Functions ..
                    127:       INTEGER            DLANEG
                    128:       EXTERNAL           DLANEG
                    129: *
                    130: *     ..
                    131: *     .. Intrinsic Functions ..
                    132:       INTRINSIC          ABS, MAX, MIN
                    133: *     ..
                    134: *     .. Executable Statements ..
                    135: *
                    136:       INFO = 0
                    137: *
                    138:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
                    139:      $           LOG( TWO ) ) + 2
                    140:       MNWDTH = TWO * PIVMIN
                    141: *
                    142:       R = TWIST
                    143:       IF((R.LT.1).OR.(R.GT.N)) R = N
                    144: *
                    145: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
                    146: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
                    147: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
                    148: *     for an unconverged interval is set to the index of the next unconverged
                    149: *     interval, and is -1 or 0 for a converged interval. Thus a linked
                    150: *     list of unconverged intervals is set up.
                    151: *
                    152:       I1 = IFIRST
                    153: *     The number of unconverged intervals
                    154:       NINT = 0
                    155: *     The last unconverged interval found
                    156:       PREV = 0
                    157: 
                    158:       RGAP = WGAP( I1-OFFSET )
                    159:       DO 75 I = I1, ILAST
                    160:          K = 2*I
                    161:          II = I - OFFSET
                    162:          LEFT = W( II ) - WERR( II )
                    163:          RIGHT = W( II ) + WERR( II )
                    164:          LGAP = RGAP
                    165:          RGAP = WGAP( II )
                    166:          GAP = MIN( LGAP, RGAP )
                    167: 
                    168: *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
                    169: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
                    170: *
                    171: *        Do while( NEGCNT(LEFT).GT.I-1 )
                    172: *
                    173:          BACK = WERR( II )
                    174:  20      CONTINUE
                    175:          NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
                    176:          IF( NEGCNT.GT.I-1 ) THEN
                    177:             LEFT = LEFT - BACK
                    178:             BACK = TWO*BACK
                    179:             GO TO 20
                    180:          END IF
                    181: *
                    182: *        Do while( NEGCNT(RIGHT).LT.I )
                    183: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
                    184: *
                    185:          BACK = WERR( II )
                    186:  50      CONTINUE
                    187: 
                    188:          NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
                    189:           IF( NEGCNT.LT.I ) THEN
                    190:              RIGHT = RIGHT + BACK
                    191:              BACK = TWO*BACK
                    192:              GO TO 50
                    193:           END IF
                    194:          WIDTH = HALF*ABS( LEFT - RIGHT )
                    195:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
                    196:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
                    197:          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
                    198: *           This interval has already converged and does not need refinement.
                    199: *           (Note that the gaps might change through refining the
                    200: *            eigenvalues, however, they can only get bigger.)
                    201: *           Remove it from the list.
                    202:             IWORK( K-1 ) = -1
                    203: *           Make sure that I1 always points to the first unconverged interval
                    204:             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
                    205:             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
                    206:          ELSE
                    207: *           unconverged interval found
                    208:             PREV = I
                    209:             NINT = NINT + 1
                    210:             IWORK( K-1 ) = I + 1
                    211:             IWORK( K ) = NEGCNT
                    212:          END IF
                    213:          WORK( K-1 ) = LEFT
                    214:          WORK( K ) = RIGHT
                    215:  75   CONTINUE
                    216: 
                    217: *
                    218: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
                    219: *     and while (ITER.LT.MAXITR)
                    220: *
                    221:       ITER = 0
                    222:  80   CONTINUE
                    223:       PREV = I1 - 1
                    224:       I = I1
                    225:       OLNINT = NINT
                    226: 
                    227:       DO 100 IP = 1, OLNINT
                    228:          K = 2*I
                    229:          II = I - OFFSET
                    230:          RGAP = WGAP( II )
                    231:          LGAP = RGAP
                    232:          IF(II.GT.1) LGAP = WGAP( II-1 )
                    233:          GAP = MIN( LGAP, RGAP )
                    234:          NEXT = IWORK( K-1 )
                    235:          LEFT = WORK( K-1 )
                    236:          RIGHT = WORK( K )
                    237:          MID = HALF*( LEFT + RIGHT )
                    238: 
                    239: *        semiwidth of interval
                    240:          WIDTH = RIGHT - MID
                    241:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
                    242:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
                    243:          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
                    244:      $       ( ITER.EQ.MAXITR ) )THEN
                    245: *           reduce number of unconverged intervals
                    246:             NINT = NINT - 1
                    247: *           Mark interval as converged.
                    248:             IWORK( K-1 ) = 0
                    249:             IF( I1.EQ.I ) THEN
                    250:                I1 = NEXT
                    251:             ELSE
                    252: *              Prev holds the last unconverged interval previously examined
                    253:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
                    254:             END IF
                    255:             I = NEXT
                    256:             GO TO 100
                    257:          END IF
                    258:          PREV = I
                    259: *
                    260: *        Perform one bisection step
                    261: *
                    262:          NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
                    263:          IF( NEGCNT.LE.I-1 ) THEN
                    264:             WORK( K-1 ) = MID
                    265:          ELSE
                    266:             WORK( K ) = MID
                    267:          END IF
                    268:          I = NEXT
                    269:  100  CONTINUE
                    270:       ITER = ITER + 1
                    271: *     do another loop if there are still unconverged intervals
                    272: *     However, in the last iteration, all intervals are accepted
                    273: *     since this is the best we can do.
                    274:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
                    275: *
                    276: *
                    277: *     At this point, all the intervals have converged
                    278:       DO 110 I = IFIRST, ILAST
                    279:          K = 2*I
                    280:          II = I - OFFSET
                    281: *        All intervals marked by '0' have been refined.
                    282:          IF( IWORK( K-1 ).EQ.0 ) THEN
                    283:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
                    284:             WERR( II ) = WORK( K ) - W( II )
                    285:          END IF
                    286:  110  CONTINUE
                    287: *
                    288:       DO 111 I = IFIRST+1, ILAST
                    289:          K = 2*I
                    290:          II = I - OFFSET
                    291:          WGAP( II-1 ) = MAX( ZERO,
                    292:      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
                    293:  111  CONTINUE
                    294: 
                    295:       RETURN
                    296: *
                    297: *     End of DLARRB
                    298: *
                    299:       END

CVSweb interface <joel.bertrand@systella.fr>