Annotation of rpl/lapack/lapack/dlarrb.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
        !             2:      $                   RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
        !             3:      $                   PIVMIN, SPDIAM, TWIST, INFO )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST
        !            12:       DOUBLE PRECISION   PIVMIN, RTOL1, RTOL2, SPDIAM
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       INTEGER            IWORK( * )
        !            16:       DOUBLE PRECISION   D( * ), LLD( * ), W( * ),
        !            17:      $                   WERR( * ), WGAP( * ), WORK( * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  Given the relatively robust representation(RRR) L D L^T, DLARRB
        !            24: *  does "limited" bisection to refine the eigenvalues of L D L^T,
        !            25: *  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
        !            26: *  guesses for these eigenvalues are input in W, the corresponding estimate
        !            27: *  of the error in these guesses and their gaps are input in WERR
        !            28: *  and WGAP, respectively. During bisection, intervals
        !            29: *  [left, right] are maintained by storing their mid-points and
        !            30: *  semi-widths in the arrays W and WERR respectively.
        !            31: *
        !            32: *  Arguments
        !            33: *  =========
        !            34: *
        !            35: *  N       (input) INTEGER
        !            36: *          The order of the matrix.
        !            37: *
        !            38: *  D       (input) DOUBLE PRECISION array, dimension (N)
        !            39: *          The N diagonal elements of the diagonal matrix D.
        !            40: *
        !            41: *  LLD     (input) DOUBLE PRECISION array, dimension (N-1)
        !            42: *          The (N-1) elements L(i)*L(i)*D(i).
        !            43: *
        !            44: *  IFIRST  (input) INTEGER
        !            45: *          The index of the first eigenvalue to be computed.
        !            46: *
        !            47: *  ILAST   (input) INTEGER
        !            48: *          The index of the last eigenvalue to be computed.
        !            49: *
        !            50: *  RTOL1   (input) DOUBLE PRECISION
        !            51: *  RTOL2   (input) DOUBLE PRECISION
        !            52: *          Tolerance for the convergence of the bisection intervals.
        !            53: *          An interval [LEFT,RIGHT] has converged if
        !            54: *          RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
        !            55: *          where GAP is the (estimated) distance to the nearest
        !            56: *          eigenvalue.
        !            57: *
        !            58: *  OFFSET  (input) INTEGER
        !            59: *          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
        !            60: *          through ILAST-OFFSET elements of these arrays are to be used.
        !            61: *
        !            62: *  W       (input/output) DOUBLE PRECISION array, dimension (N)
        !            63: *          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
        !            64: *          estimates of the eigenvalues of L D L^T indexed IFIRST throug
        !            65: *          ILAST.
        !            66: *          On output, these estimates are refined.
        !            67: *
        !            68: *  WGAP    (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            69: *          On input, the (estimated) gaps between consecutive
        !            70: *          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
        !            71: *          eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
        !            72: *          then WGAP(IFIRST-OFFSET) must be set to ZERO.
        !            73: *          On output, these gaps are refined.
        !            74: *
        !            75: *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
        !            76: *          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
        !            77: *          the errors in the estimates of the corresponding elements in W.
        !            78: *          On output, these errors are refined.
        !            79: *
        !            80: *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
        !            81: *          Workspace.
        !            82: *
        !            83: *  IWORK   (workspace) INTEGER array, dimension (2*N)
        !            84: *          Workspace.
        !            85: *
        !            86: *  PIVMIN  (input) DOUBLE PRECISION
        !            87: *          The minimum pivot in the Sturm sequence.
        !            88: *
        !            89: *  SPDIAM  (input) DOUBLE PRECISION
        !            90: *          The spectral diameter of the matrix.
        !            91: *
        !            92: *  TWIST   (input) INTEGER
        !            93: *          The twist index for the twisted factorization that is used
        !            94: *          for the negcount.
        !            95: *          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
        !            96: *          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
        !            97: *          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
        !            98: *
        !            99: *  INFO    (output) INTEGER
        !           100: *          Error flag.
        !           101: *
        !           102: *  Further Details
        !           103: *  ===============
        !           104: *
        !           105: *  Based on contributions by
        !           106: *     Beresford Parlett, University of California, Berkeley, USA
        !           107: *     Jim Demmel, University of California, Berkeley, USA
        !           108: *     Inderjit Dhillon, University of Texas, Austin, USA
        !           109: *     Osni Marques, LBNL/NERSC, USA
        !           110: *     Christof Voemel, University of California, Berkeley, USA
        !           111: *
        !           112: *  =====================================================================
        !           113: *
        !           114: *     .. Parameters ..
        !           115:       DOUBLE PRECISION   ZERO, TWO, HALF
        !           116:       PARAMETER        ( ZERO = 0.0D0, TWO = 2.0D0,
        !           117:      $                   HALF = 0.5D0 )
        !           118:       INTEGER   MAXITR
        !           119: *     ..
        !           120: *     .. Local Scalars ..
        !           121:       INTEGER            I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
        !           122:      $                   OLNINT, PREV, R
        !           123:       DOUBLE PRECISION   BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
        !           124:      $                   RGAP, RIGHT, TMP, WIDTH
        !           125: *     ..
        !           126: *     .. External Functions ..
        !           127:       INTEGER            DLANEG
        !           128:       EXTERNAL           DLANEG
        !           129: *
        !           130: *     ..
        !           131: *     .. Intrinsic Functions ..
        !           132:       INTRINSIC          ABS, MAX, MIN
        !           133: *     ..
        !           134: *     .. Executable Statements ..
        !           135: *
        !           136:       INFO = 0
        !           137: *
        !           138:       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
        !           139:      $           LOG( TWO ) ) + 2
        !           140:       MNWDTH = TWO * PIVMIN
        !           141: *
        !           142:       R = TWIST
        !           143:       IF((R.LT.1).OR.(R.GT.N)) R = N
        !           144: *
        !           145: *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
        !           146: *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
        !           147: *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
        !           148: *     for an unconverged interval is set to the index of the next unconverged
        !           149: *     interval, and is -1 or 0 for a converged interval. Thus a linked
        !           150: *     list of unconverged intervals is set up.
        !           151: *
        !           152:       I1 = IFIRST
        !           153: *     The number of unconverged intervals
        !           154:       NINT = 0
        !           155: *     The last unconverged interval found
        !           156:       PREV = 0
        !           157: 
        !           158:       RGAP = WGAP( I1-OFFSET )
        !           159:       DO 75 I = I1, ILAST
        !           160:          K = 2*I
        !           161:          II = I - OFFSET
        !           162:          LEFT = W( II ) - WERR( II )
        !           163:          RIGHT = W( II ) + WERR( II )
        !           164:          LGAP = RGAP
        !           165:          RGAP = WGAP( II )
        !           166:          GAP = MIN( LGAP, RGAP )
        !           167: 
        !           168: *        Make sure that [LEFT,RIGHT] contains the desired eigenvalue
        !           169: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
        !           170: *
        !           171: *        Do while( NEGCNT(LEFT).GT.I-1 )
        !           172: *
        !           173:          BACK = WERR( II )
        !           174:  20      CONTINUE
        !           175:          NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
        !           176:          IF( NEGCNT.GT.I-1 ) THEN
        !           177:             LEFT = LEFT - BACK
        !           178:             BACK = TWO*BACK
        !           179:             GO TO 20
        !           180:          END IF
        !           181: *
        !           182: *        Do while( NEGCNT(RIGHT).LT.I )
        !           183: *        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
        !           184: *
        !           185:          BACK = WERR( II )
        !           186:  50      CONTINUE
        !           187: 
        !           188:          NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
        !           189:           IF( NEGCNT.LT.I ) THEN
        !           190:              RIGHT = RIGHT + BACK
        !           191:              BACK = TWO*BACK
        !           192:              GO TO 50
        !           193:           END IF
        !           194:          WIDTH = HALF*ABS( LEFT - RIGHT )
        !           195:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
        !           196:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
        !           197:          IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
        !           198: *           This interval has already converged and does not need refinement.
        !           199: *           (Note that the gaps might change through refining the
        !           200: *            eigenvalues, however, they can only get bigger.)
        !           201: *           Remove it from the list.
        !           202:             IWORK( K-1 ) = -1
        !           203: *           Make sure that I1 always points to the first unconverged interval
        !           204:             IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
        !           205:             IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
        !           206:          ELSE
        !           207: *           unconverged interval found
        !           208:             PREV = I
        !           209:             NINT = NINT + 1
        !           210:             IWORK( K-1 ) = I + 1
        !           211:             IWORK( K ) = NEGCNT
        !           212:          END IF
        !           213:          WORK( K-1 ) = LEFT
        !           214:          WORK( K ) = RIGHT
        !           215:  75   CONTINUE
        !           216: 
        !           217: *
        !           218: *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
        !           219: *     and while (ITER.LT.MAXITR)
        !           220: *
        !           221:       ITER = 0
        !           222:  80   CONTINUE
        !           223:       PREV = I1 - 1
        !           224:       I = I1
        !           225:       OLNINT = NINT
        !           226: 
        !           227:       DO 100 IP = 1, OLNINT
        !           228:          K = 2*I
        !           229:          II = I - OFFSET
        !           230:          RGAP = WGAP( II )
        !           231:          LGAP = RGAP
        !           232:          IF(II.GT.1) LGAP = WGAP( II-1 )
        !           233:          GAP = MIN( LGAP, RGAP )
        !           234:          NEXT = IWORK( K-1 )
        !           235:          LEFT = WORK( K-1 )
        !           236:          RIGHT = WORK( K )
        !           237:          MID = HALF*( LEFT + RIGHT )
        !           238: 
        !           239: *        semiwidth of interval
        !           240:          WIDTH = RIGHT - MID
        !           241:          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
        !           242:          CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
        !           243:          IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
        !           244:      $       ( ITER.EQ.MAXITR ) )THEN
        !           245: *           reduce number of unconverged intervals
        !           246:             NINT = NINT - 1
        !           247: *           Mark interval as converged.
        !           248:             IWORK( K-1 ) = 0
        !           249:             IF( I1.EQ.I ) THEN
        !           250:                I1 = NEXT
        !           251:             ELSE
        !           252: *              Prev holds the last unconverged interval previously examined
        !           253:                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
        !           254:             END IF
        !           255:             I = NEXT
        !           256:             GO TO 100
        !           257:          END IF
        !           258:          PREV = I
        !           259: *
        !           260: *        Perform one bisection step
        !           261: *
        !           262:          NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
        !           263:          IF( NEGCNT.LE.I-1 ) THEN
        !           264:             WORK( K-1 ) = MID
        !           265:          ELSE
        !           266:             WORK( K ) = MID
        !           267:          END IF
        !           268:          I = NEXT
        !           269:  100  CONTINUE
        !           270:       ITER = ITER + 1
        !           271: *     do another loop if there are still unconverged intervals
        !           272: *     However, in the last iteration, all intervals are accepted
        !           273: *     since this is the best we can do.
        !           274:       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
        !           275: *
        !           276: *
        !           277: *     At this point, all the intervals have converged
        !           278:       DO 110 I = IFIRST, ILAST
        !           279:          K = 2*I
        !           280:          II = I - OFFSET
        !           281: *        All intervals marked by '0' have been refined.
        !           282:          IF( IWORK( K-1 ).EQ.0 ) THEN
        !           283:             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
        !           284:             WERR( II ) = WORK( K ) - W( II )
        !           285:          END IF
        !           286:  110  CONTINUE
        !           287: *
        !           288:       DO 111 I = IFIRST+1, ILAST
        !           289:          K = 2*I
        !           290:          II = I - OFFSET
        !           291:          WGAP( II-1 ) = MAX( ZERO,
        !           292:      $                     W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
        !           293:  111  CONTINUE
        !           294: 
        !           295:       RETURN
        !           296: *
        !           297: *     End of DLARRB
        !           298: *
        !           299:       END

CVSweb interface <joel.bertrand@systella.fr>