File:  [local] / rpl / lapack / lapack / dlarft.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:57 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLARFT + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          DIRECT, STOREV
   25: *       INTEGER            K, LDT, LDV, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DLARFT forms the triangular factor T of a real block reflector H
   38: *> of order n, which is defined as a product of k elementary reflectors.
   39: *>
   40: *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
   41: *>
   42: *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
   43: *>
   44: *> If STOREV = 'C', the vector which defines the elementary reflector
   45: *> H(i) is stored in the i-th column of the array V, and
   46: *>
   47: *>    H  =  I - V * T * V**T
   48: *>
   49: *> If STOREV = 'R', the vector which defines the elementary reflector
   50: *> H(i) is stored in the i-th row of the array V, and
   51: *>
   52: *>    H  =  I - V**T * T * V
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] DIRECT
   59: *> \verbatim
   60: *>          DIRECT is CHARACTER*1
   61: *>          Specifies the order in which the elementary reflectors are
   62: *>          multiplied to form the block reflector:
   63: *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
   64: *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
   65: *> \endverbatim
   66: *>
   67: *> \param[in] STOREV
   68: *> \verbatim
   69: *>          STOREV is CHARACTER*1
   70: *>          Specifies how the vectors which define the elementary
   71: *>          reflectors are stored (see also Further Details):
   72: *>          = 'C': columnwise
   73: *>          = 'R': rowwise
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the block reflector H. N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>          The order of the triangular factor T (= the number of
   86: *>          elementary reflectors). K >= 1.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] V
   90: *> \verbatim
   91: *>          V is DOUBLE PRECISION array, dimension
   92: *>                               (LDV,K) if STOREV = 'C'
   93: *>                               (LDV,N) if STOREV = 'R'
   94: *>          The matrix V. See further details.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDV
   98: *> \verbatim
   99: *>          LDV is INTEGER
  100: *>          The leading dimension of the array V.
  101: *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TAU
  105: *> \verbatim
  106: *>          TAU is DOUBLE PRECISION array, dimension (K)
  107: *>          TAU(i) must contain the scalar factor of the elementary
  108: *>          reflector H(i).
  109: *> \endverbatim
  110: *>
  111: *> \param[out] T
  112: *> \verbatim
  113: *>          T is DOUBLE PRECISION array, dimension (LDT,K)
  114: *>          The k by k triangular factor T of the block reflector.
  115: *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  116: *>          lower triangular. The rest of the array is not used.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDT
  120: *> \verbatim
  121: *>          LDT is INTEGER
  122: *>          The leading dimension of the array T. LDT >= K.
  123: *> \endverbatim
  124: *
  125: *  Authors:
  126: *  ========
  127: *
  128: *> \author Univ. of Tennessee
  129: *> \author Univ. of California Berkeley
  130: *> \author Univ. of Colorado Denver
  131: *> \author NAG Ltd.
  132: *
  133: *> \ingroup doubleOTHERauxiliary
  134: *
  135: *> \par Further Details:
  136: *  =====================
  137: *>
  138: *> \verbatim
  139: *>
  140: *>  The shape of the matrix V and the storage of the vectors which define
  141: *>  the H(i) is best illustrated by the following example with n = 5 and
  142: *>  k = 3. The elements equal to 1 are not stored.
  143: *>
  144: *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
  145: *>
  146: *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
  147: *>                   ( v1  1    )                     (     1 v2 v2 v2 )
  148: *>                   ( v1 v2  1 )                     (        1 v3 v3 )
  149: *>                   ( v1 v2 v3 )
  150: *>                   ( v1 v2 v3 )
  151: *>
  152: *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
  153: *>
  154: *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
  155: *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
  156: *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
  157: *>                   (     1 v3 )
  158: *>                   (        1 )
  159: *> \endverbatim
  160: *>
  161: *  =====================================================================
  162:       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  163: *
  164: *  -- LAPACK auxiliary routine --
  165: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  166: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167: *
  168: *     .. Scalar Arguments ..
  169:       CHARACTER          DIRECT, STOREV
  170:       INTEGER            K, LDT, LDV, N
  171: *     ..
  172: *     .. Array Arguments ..
  173:       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ONE, ZERO
  180:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       INTEGER            I, J, PREVLASTV, LASTV
  184: *     ..
  185: *     .. External Subroutines ..
  186:       EXTERNAL           DGEMV, DTRMV
  187: *     ..
  188: *     .. External Functions ..
  189:       LOGICAL            LSAME
  190:       EXTERNAL           LSAME
  191: *     ..
  192: *     .. Executable Statements ..
  193: *
  194: *     Quick return if possible
  195: *
  196:       IF( N.EQ.0 )
  197:      $   RETURN
  198: *
  199:       IF( LSAME( DIRECT, 'F' ) ) THEN
  200:          PREVLASTV = N
  201:          DO I = 1, K
  202:             PREVLASTV = MAX( I, PREVLASTV )
  203:             IF( TAU( I ).EQ.ZERO ) THEN
  204: *
  205: *              H(i)  =  I
  206: *
  207:                DO J = 1, I
  208:                   T( J, I ) = ZERO
  209:                END DO
  210:             ELSE
  211: *
  212: *              general case
  213: *
  214:                IF( LSAME( STOREV, 'C' ) ) THEN
  215: *                 Skip any trailing zeros.
  216:                   DO LASTV = N, I+1, -1
  217:                      IF( V( LASTV, I ).NE.ZERO ) EXIT
  218:                   END DO
  219:                   DO J = 1, I-1
  220:                      T( J, I ) = -TAU( I ) * V( I , J )
  221:                   END DO
  222:                   J = MIN( LASTV, PREVLASTV )
  223: *
  224: *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
  225: *
  226:                   CALL DGEMV( 'Transpose', J-I, I-1, -TAU( I ),
  227:      $                        V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
  228:      $                        T( 1, I ), 1 )
  229:                ELSE
  230: *                 Skip any trailing zeros.
  231:                   DO LASTV = N, I+1, -1
  232:                      IF( V( I, LASTV ).NE.ZERO ) EXIT
  233:                   END DO
  234:                   DO J = 1, I-1
  235:                      T( J, I ) = -TAU( I ) * V( J , I )
  236:                   END DO
  237:                   J = MIN( LASTV, PREVLASTV )
  238: *
  239: *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
  240: *
  241:                   CALL DGEMV( 'No transpose', I-1, J-I, -TAU( I ),
  242:      $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, ONE,
  243:      $                        T( 1, I ), 1 )
  244:                END IF
  245: *
  246: *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
  247: *
  248:                CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
  249:      $                     LDT, T( 1, I ), 1 )
  250:                T( I, I ) = TAU( I )
  251:                IF( I.GT.1 ) THEN
  252:                   PREVLASTV = MAX( PREVLASTV, LASTV )
  253:                ELSE
  254:                   PREVLASTV = LASTV
  255:                END IF
  256:             END IF
  257:          END DO
  258:       ELSE
  259:          PREVLASTV = 1
  260:          DO I = K, 1, -1
  261:             IF( TAU( I ).EQ.ZERO ) THEN
  262: *
  263: *              H(i)  =  I
  264: *
  265:                DO J = I, K
  266:                   T( J, I ) = ZERO
  267:                END DO
  268:             ELSE
  269: *
  270: *              general case
  271: *
  272:                IF( I.LT.K ) THEN
  273:                   IF( LSAME( STOREV, 'C' ) ) THEN
  274: *                    Skip any leading zeros.
  275:                      DO LASTV = 1, I-1
  276:                         IF( V( LASTV, I ).NE.ZERO ) EXIT
  277:                      END DO
  278:                      DO J = I+1, K
  279:                         T( J, I ) = -TAU( I ) * V( N-K+I , J )
  280:                      END DO
  281:                      J = MAX( LASTV, PREVLASTV )
  282: *
  283: *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
  284: *
  285:                      CALL DGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
  286:      $                           V( J, I+1 ), LDV, V( J, I ), 1, ONE,
  287:      $                           T( I+1, I ), 1 )
  288:                   ELSE
  289: *                    Skip any leading zeros.
  290:                      DO LASTV = 1, I-1
  291:                         IF( V( I, LASTV ).NE.ZERO ) EXIT
  292:                      END DO
  293:                      DO J = I+1, K
  294:                         T( J, I ) = -TAU( I ) * V( J, N-K+I )
  295:                      END DO
  296:                      J = MAX( LASTV, PREVLASTV )
  297: *
  298: *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
  299: *
  300:                      CALL DGEMV( 'No transpose', K-I, N-K+I-J,
  301:      $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
  302:      $                    ONE, T( I+1, I ), 1 )
  303:                   END IF
  304: *
  305: *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
  306: *
  307:                   CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  308:      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  309:                   IF( I.GT.1 ) THEN
  310:                      PREVLASTV = MIN( PREVLASTV, LASTV )
  311:                   ELSE
  312:                      PREVLASTV = LASTV
  313:                   END IF
  314:                END IF
  315:                T( I, I ) = TAU( I )
  316:             END IF
  317:          END DO
  318:       END IF
  319:       RETURN
  320: *
  321: *     End of DLARFT
  322: *
  323:       END

CVSweb interface <joel.bertrand@systella.fr>