Annotation of rpl/lapack/lapack/dlarfgp.f, revision 1.18

1.12      bertrand    1: *> \brief \b DLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.6       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DLARFGP + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfgp.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfgp.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfgp.f">
1.6       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.6       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
1.14      bertrand   22: *
1.6       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INCX, N
                     25: *       DOUBLE PRECISION   ALPHA, TAU
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   X( * )
                     29: *       ..
1.14      bertrand   30: *
1.6       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLARFGP generates a real elementary reflector H of order n, such
                     38: *> that
                     39: *>
                     40: *>       H * ( alpha ) = ( beta ),   H**T * H = I.
                     41: *>           (   x   )   (   0  )
                     42: *>
                     43: *> where alpha and beta are scalars, beta is non-negative, and x is
                     44: *> an (n-1)-element real vector.  H is represented in the form
                     45: *>
                     46: *>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
                     47: *>                     ( v )
                     48: *>
                     49: *> where tau is a real scalar and v is a real (n-1)-element
                     50: *> vector.
                     51: *>
                     52: *> If the elements of x are all zero, then tau = 0 and H is taken to be
                     53: *> the unit matrix.
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The order of the elementary reflector.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in,out] ALPHA
                     66: *> \verbatim
                     67: *>          ALPHA is DOUBLE PRECISION
                     68: *>          On entry, the value alpha.
                     69: *>          On exit, it is overwritten with the value beta.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in,out] X
                     73: *> \verbatim
                     74: *>          X is DOUBLE PRECISION array, dimension
                     75: *>                         (1+(N-2)*abs(INCX))
                     76: *>          On entry, the vector x.
                     77: *>          On exit, it is overwritten with the vector v.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] INCX
                     81: *> \verbatim
                     82: *>          INCX is INTEGER
                     83: *>          The increment between elements of X. INCX > 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] TAU
                     87: *> \verbatim
                     88: *>          TAU is DOUBLE PRECISION
                     89: *>          The value tau.
                     90: *> \endverbatim
                     91: *
                     92: *  Authors:
                     93: *  ========
                     94: *
1.14      bertrand   95: *> \author Univ. of Tennessee
                     96: *> \author Univ. of California Berkeley
                     97: *> \author Univ. of Colorado Denver
                     98: *> \author NAG Ltd.
1.6       bertrand   99: *
                    100: *> \ingroup doubleOTHERauxiliary
                    101: *
                    102: *  =====================================================================
1.1       bertrand  103:       SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
                    104: *
1.18    ! bertrand  105: *  -- LAPACK auxiliary routine --
1.1       bertrand  106: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    107: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    108: *
                    109: *     .. Scalar Arguments ..
                    110:       INTEGER            INCX, N
                    111:       DOUBLE PRECISION   ALPHA, TAU
                    112: *     ..
                    113: *     .. Array Arguments ..
                    114:       DOUBLE PRECISION   X( * )
                    115: *     ..
                    116: *
                    117: *  =====================================================================
                    118: *
                    119: *     .. Parameters ..
                    120:       DOUBLE PRECISION   TWO, ONE, ZERO
                    121:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
                    122: *     ..
                    123: *     .. Local Scalars ..
                    124:       INTEGER            J, KNT
                    125:       DOUBLE PRECISION   BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM
                    126: *     ..
                    127: *     .. External Functions ..
                    128:       DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
                    129:       EXTERNAL           DLAMCH, DLAPY2, DNRM2
                    130: *     ..
                    131: *     .. Intrinsic Functions ..
                    132:       INTRINSIC          ABS, SIGN
                    133: *     ..
                    134: *     .. External Subroutines ..
                    135:       EXTERNAL           DSCAL
                    136: *     ..
                    137: *     .. Executable Statements ..
                    138: *
                    139:       IF( N.LE.0 ) THEN
                    140:          TAU = ZERO
                    141:          RETURN
                    142:       END IF
                    143: *
                    144:       XNORM = DNRM2( N-1, X, INCX )
                    145: *
                    146:       IF( XNORM.EQ.ZERO ) THEN
                    147: *
                    148: *        H  =  [+/-1, 0; I], sign chosen so ALPHA >= 0
                    149: *
                    150:          IF( ALPHA.GE.ZERO ) THEN
                    151: *           When TAU.eq.ZERO, the vector is special-cased to be
                    152: *           all zeros in the application routines.  We do not need
                    153: *           to clear it.
                    154:             TAU = ZERO
                    155:          ELSE
                    156: *           However, the application routines rely on explicit
                    157: *           zero checks when TAU.ne.ZERO, and we must clear X.
                    158:             TAU = TWO
                    159:             DO J = 1, N-1
                    160:                X( 1 + (J-1)*INCX ) = 0
                    161:             END DO
                    162:             ALPHA = -ALPHA
                    163:          END IF
                    164:       ELSE
                    165: *
                    166: *        general case
                    167: *
                    168:          BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
                    169:          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
                    170:          KNT = 0
                    171:          IF( ABS( BETA ).LT.SMLNUM ) THEN
                    172: *
                    173: *           XNORM, BETA may be inaccurate; scale X and recompute them
                    174: *
                    175:             BIGNUM = ONE / SMLNUM
                    176:    10       CONTINUE
                    177:             KNT = KNT + 1
                    178:             CALL DSCAL( N-1, BIGNUM, X, INCX )
                    179:             BETA = BETA*BIGNUM
                    180:             ALPHA = ALPHA*BIGNUM
1.16      bertrand  181:             IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
1.1       bertrand  182:      $         GO TO 10
                    183: *
                    184: *           New BETA is at most 1, at least SMLNUM
                    185: *
                    186:             XNORM = DNRM2( N-1, X, INCX )
                    187:             BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
                    188:          END IF
                    189:          SAVEALPHA = ALPHA
                    190:          ALPHA = ALPHA + BETA
                    191:          IF( BETA.LT.ZERO ) THEN
                    192:             BETA = -BETA
                    193:             TAU = -ALPHA / BETA
                    194:          ELSE
                    195:             ALPHA = XNORM * (XNORM/ALPHA)
                    196:             TAU = ALPHA / BETA
                    197:             ALPHA = -ALPHA
                    198:          END IF
                    199: *
                    200:          IF ( ABS(TAU).LE.SMLNUM ) THEN
                    201: *
                    202: *           In the case where the computed TAU ends up being a denormalized number,
1.14      bertrand  203: *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
1.1       bertrand  204: *           to ZERO. This explains the next IF statement.
                    205: *
                    206: *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
                    207: *           (Thanks Pat. Thanks MathWorks.)
                    208: *
                    209:             IF( SAVEALPHA.GE.ZERO ) THEN
                    210:                TAU = ZERO
                    211:             ELSE
                    212:                TAU = TWO
                    213:                DO J = 1, N-1
                    214:                   X( 1 + (J-1)*INCX ) = 0
                    215:                END DO
                    216:                BETA = -SAVEALPHA
                    217:             END IF
                    218: *
1.14      bertrand  219:          ELSE
1.1       bertrand  220: *
                    221: *           This is the general case.
                    222: *
                    223:             CALL DSCAL( N-1, ONE / ALPHA, X, INCX )
                    224: *
                    225:          END IF
                    226: *
                    227: *        If BETA is subnormal, it may lose relative accuracy
                    228: *
                    229:          DO 20 J = 1, KNT
                    230:             BETA = BETA*SMLNUM
                    231:  20      CONTINUE
                    232:          ALPHA = BETA
                    233:       END IF
                    234: *
                    235:       RETURN
                    236: *
                    237: *     End of DLARFGP
                    238: *
                    239:       END

CVSweb interface <joel.bertrand@systella.fr>