Diff for /rpl/lapack/lapack/dlarfb.f between versions 1.8 and 1.9

version 1.8, 2011/07/22 07:38:07 version 1.9, 2011/11/21 20:42:57
Line 1 Line 1
   *> \brief \b DLARFB
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DLARFB + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfb.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfb.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfb.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
   *                          T, LDT, C, LDC, WORK, LDWORK )
   * 
   *       .. Scalar Arguments ..
   *       CHARACTER          DIRECT, SIDE, STOREV, TRANS
   *       INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
   *       ..
   *       .. Array Arguments ..
   *       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
   *      $                   WORK( LDWORK, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DLARFB applies a real block reflector H or its transpose H**T to a
   *> real m by n matrix C, from either the left or the right.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] SIDE
   *> \verbatim
   *>          SIDE is CHARACTER*1
   *>          = 'L': apply H or H**T from the Left
   *>          = 'R': apply H or H**T from the Right
   *> \endverbatim
   *>
   *> \param[in] TRANS
   *> \verbatim
   *>          TRANS is CHARACTER*1
   *>          = 'N': apply H (No transpose)
   *>          = 'T': apply H**T (Transpose)
   *> \endverbatim
   *>
   *> \param[in] DIRECT
   *> \verbatim
   *>          DIRECT is CHARACTER*1
   *>          Indicates how H is formed from a product of elementary
   *>          reflectors
   *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
   *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
   *> \endverbatim
   *>
   *> \param[in] STOREV
   *> \verbatim
   *>          STOREV is CHARACTER*1
   *>          Indicates how the vectors which define the elementary
   *>          reflectors are stored:
   *>          = 'C': Columnwise
   *>          = 'R': Rowwise
   *> \endverbatim
   *>
   *> \param[in] M
   *> \verbatim
   *>          M is INTEGER
   *>          The number of rows of the matrix C.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The number of columns of the matrix C.
   *> \endverbatim
   *>
   *> \param[in] K
   *> \verbatim
   *>          K is INTEGER
   *>          The order of the matrix T (= the number of elementary
   *>          reflectors whose product defines the block reflector).
   *> \endverbatim
   *>
   *> \param[in] V
   *> \verbatim
   *>          V is DOUBLE PRECISION array, dimension
   *>                                (LDV,K) if STOREV = 'C'
   *>                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
   *>                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
   *>          The matrix V. See Further Details.
   *> \endverbatim
   *>
   *> \param[in] LDV
   *> \verbatim
   *>          LDV is INTEGER
   *>          The leading dimension of the array V.
   *>          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
   *>          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
   *>          if STOREV = 'R', LDV >= K.
   *> \endverbatim
   *>
   *> \param[in] T
   *> \verbatim
   *>          T is DOUBLE PRECISION array, dimension (LDT,K)
   *>          The triangular k by k matrix T in the representation of the
   *>          block reflector.
   *> \endverbatim
   *>
   *> \param[in] LDT
   *> \verbatim
   *>          LDT is INTEGER
   *>          The leading dimension of the array T. LDT >= K.
   *> \endverbatim
   *>
   *> \param[in,out] C
   *> \verbatim
   *>          C is DOUBLE PRECISION array, dimension (LDC,N)
   *>          On entry, the m by n matrix C.
   *>          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
   *> \endverbatim
   *>
   *> \param[in] LDC
   *> \verbatim
   *>          LDC is INTEGER
   *>          The leading dimension of the array C. LDC >= max(1,M).
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
   *> \endverbatim
   *>
   *> \param[in] LDWORK
   *> \verbatim
   *>          LDWORK is INTEGER
   *>          The leading dimension of the array WORK.
   *>          If SIDE = 'L', LDWORK >= max(1,N);
   *>          if SIDE = 'R', LDWORK >= max(1,M).
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleOTHERauxiliary
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  The shape of the matrix V and the storage of the vectors which define
   *>  the H(i) is best illustrated by the following example with n = 5 and
   *>  k = 3. The elements equal to 1 are not stored; the corresponding
   *>  array elements are modified but restored on exit. The rest of the
   *>  array is not used.
   *>
   *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
   *>
   *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
   *>                   ( v1  1    )                     (     1 v2 v2 v2 )
   *>                   ( v1 v2  1 )                     (        1 v3 v3 )
   *>                   ( v1 v2 v3 )
   *>                   ( v1 v2 v3 )
   *>
   *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
   *>
   *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
   *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
   *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
   *>                   (     1 v3 )
   *>                   (        1 )
   *> \endverbatim
   *>
   *  =====================================================================
       SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,        SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
      $                   T, LDT, C, LDC, WORK, LDWORK )       $                   T, LDT, C, LDC, WORK, LDWORK )
       IMPLICIT NONE  
 *  *
 *  -- LAPACK auxiliary routine (version 3.3.1) --  *  -- LAPACK auxiliary routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --  *     November 2011
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          DIRECT, SIDE, STOREV, TRANS        CHARACTER          DIRECT, SIDE, STOREV, TRANS
Line 16 Line 209
      $                   WORK( LDWORK, * )       $                   WORK( LDWORK, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DLARFB applies a real block reflector H or its transpose H**T to a  
 *  real m by n matrix C, from either the left or the right.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  SIDE    (input) CHARACTER*1  
 *          = 'L': apply H or H**T from the Left  
 *          = 'R': apply H or H**T from the Right  
 *  
 *  TRANS   (input) CHARACTER*1  
 *          = 'N': apply H (No transpose)  
 *          = 'T': apply H**T (Transpose)  
 *  
 *  DIRECT  (input) CHARACTER*1  
 *          Indicates how H is formed from a product of elementary  
 *          reflectors  
 *          = 'F': H = H(1) H(2) . . . H(k) (Forward)  
 *          = 'B': H = H(k) . . . H(2) H(1) (Backward)  
 *  
 *  STOREV  (input) CHARACTER*1  
 *          Indicates how the vectors which define the elementary  
 *          reflectors are stored:  
 *          = 'C': Columnwise  
 *          = 'R': Rowwise  
 *  
 *  M       (input) INTEGER  
 *          The number of rows of the matrix C.  
 *  
 *  N       (input) INTEGER  
 *          The number of columns of the matrix C.  
 *  
 *  K       (input) INTEGER  
 *          The order of the matrix T (= the number of elementary  
 *          reflectors whose product defines the block reflector).  
 *  
 *  V       (input) DOUBLE PRECISION array, dimension  
 *                                (LDV,K) if STOREV = 'C'  
 *                                (LDV,M) if STOREV = 'R' and SIDE = 'L'  
 *                                (LDV,N) if STOREV = 'R' and SIDE = 'R'  
 *          The matrix V. See Further Details.  
 *  
 *  LDV     (input) INTEGER  
 *          The leading dimension of the array V.  
 *          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);  
 *          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);  
 *          if STOREV = 'R', LDV >= K.  
 *  
 *  T       (input) DOUBLE PRECISION array, dimension (LDT,K)  
 *          The triangular k by k matrix T in the representation of the  
 *          block reflector.  
 *  
 *  LDT     (input) INTEGER  
 *          The leading dimension of the array T. LDT >= K.  
 *  
 *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)  
 *          On entry, the m by n matrix C.  
 *          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.  
 *  
 *  LDC     (input) INTEGER  
 *          The leading dimension of the array C. LDC >= max(1,M).  
 *  
 *  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)  
 *  
 *  LDWORK  (input) INTEGER  
 *          The leading dimension of the array WORK.  
 *          If SIDE = 'L', LDWORK >= max(1,N);  
 *          if SIDE = 'R', LDWORK >= max(1,M).  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  The shape of the matrix V and the storage of the vectors which define  
 *  the H(i) is best illustrated by the following example with n = 5 and  
 *  k = 3. The elements equal to 1 are not stored; the corresponding  
 *  array elements are modified but restored on exit. The rest of the  
 *  array is not used.  
 *  
 *  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':  
 *  
 *               V = (  1       )                 V = (  1 v1 v1 v1 v1 )  
 *                   ( v1  1    )                     (     1 v2 v2 v2 )  
 *                   ( v1 v2  1 )                     (        1 v3 v3 )  
 *                   ( v1 v2 v3 )  
 *                   ( v1 v2 v3 )  
 *  
 *  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':  
 *  
 *               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )  
 *                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )  
 *                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )  
 *                   (     1 v3 )  
 *                   (        1 )  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..

Removed from v.1.8  
changed lines
  Added in v.1.9


CVSweb interface <joel.bertrand@systella.fr>