--- rpl/lapack/lapack/dlarfb.f 2011/07/22 07:38:07 1.8 +++ rpl/lapack/lapack/dlarfb.f 2011/11/21 20:42:57 1.9 @@ -1,11 +1,204 @@ +*> \brief \b DLARFB +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARFB + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, +* T, LDT, C, LDC, WORK, LDWORK ) +* +* .. Scalar Arguments .. +* CHARACTER DIRECT, SIDE, STOREV, TRANS +* INTEGER K, LDC, LDT, LDV, LDWORK, M, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ), +* $ WORK( LDWORK, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARFB applies a real block reflector H or its transpose H**T to a +*> real m by n matrix C, from either the left or the right. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> = 'L': apply H or H**T from the Left +*> = 'R': apply H or H**T from the Right +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': apply H (No transpose) +*> = 'T': apply H**T (Transpose) +*> \endverbatim +*> +*> \param[in] DIRECT +*> \verbatim +*> DIRECT is CHARACTER*1 +*> Indicates how H is formed from a product of elementary +*> reflectors +*> = 'F': H = H(1) H(2) . . . H(k) (Forward) +*> = 'B': H = H(k) . . . H(2) H(1) (Backward) +*> \endverbatim +*> +*> \param[in] STOREV +*> \verbatim +*> STOREV is CHARACTER*1 +*> Indicates how the vectors which define the elementary +*> reflectors are stored: +*> = 'C': Columnwise +*> = 'R': Rowwise +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix C. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix C. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> The order of the matrix T (= the number of elementary +*> reflectors whose product defines the block reflector). +*> \endverbatim +*> +*> \param[in] V +*> \verbatim +*> V is DOUBLE PRECISION array, dimension +*> (LDV,K) if STOREV = 'C' +*> (LDV,M) if STOREV = 'R' and SIDE = 'L' +*> (LDV,N) if STOREV = 'R' and SIDE = 'R' +*> The matrix V. See Further Details. +*> \endverbatim +*> +*> \param[in] LDV +*> \verbatim +*> LDV is INTEGER +*> The leading dimension of the array V. +*> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); +*> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); +*> if STOREV = 'R', LDV >= K. +*> \endverbatim +*> +*> \param[in] T +*> \verbatim +*> T is DOUBLE PRECISION array, dimension (LDT,K) +*> The triangular k by k matrix T in the representation of the +*> block reflector. +*> \endverbatim +*> +*> \param[in] LDT +*> \verbatim +*> LDT is INTEGER +*> The leading dimension of the array T. LDT >= K. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (LDC,N) +*> On entry, the m by n matrix C. +*> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. +*> \endverbatim +*> +*> \param[in] LDC +*> \verbatim +*> LDC is INTEGER +*> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (LDWORK,K) +*> \endverbatim +*> +*> \param[in] LDWORK +*> \verbatim +*> LDWORK is INTEGER +*> The leading dimension of the array WORK. +*> If SIDE = 'L', LDWORK >= max(1,N); +*> if SIDE = 'R', LDWORK >= max(1,M). +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> The shape of the matrix V and the storage of the vectors which define +*> the H(i) is best illustrated by the following example with n = 5 and +*> k = 3. The elements equal to 1 are not stored; the corresponding +*> array elements are modified but restored on exit. The rest of the +*> array is not used. +*> +*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': +*> +*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) +*> ( v1 1 ) ( 1 v2 v2 v2 ) +*> ( v1 v2 1 ) ( 1 v3 v3 ) +*> ( v1 v2 v3 ) +*> ( v1 v2 v3 ) +*> +*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': +*> +*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) +*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) +*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) +*> ( 1 v3 ) +*> ( 1 ) +*> \endverbatim +*> +* ===================================================================== SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, $ T, LDT, C, LDC, WORK, LDWORK ) - IMPLICIT NONE * -* -- LAPACK auxiliary routine (version 3.3.1) -- +* -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- +* November 2011 * * .. Scalar Arguments .. CHARACTER DIRECT, SIDE, STOREV, TRANS @@ -16,103 +209,6 @@ $ WORK( LDWORK, * ) * .. * -* Purpose -* ======= -* -* DLARFB applies a real block reflector H or its transpose H**T to a -* real m by n matrix C, from either the left or the right. -* -* Arguments -* ========= -* -* SIDE (input) CHARACTER*1 -* = 'L': apply H or H**T from the Left -* = 'R': apply H or H**T from the Right -* -* TRANS (input) CHARACTER*1 -* = 'N': apply H (No transpose) -* = 'T': apply H**T (Transpose) -* -* DIRECT (input) CHARACTER*1 -* Indicates how H is formed from a product of elementary -* reflectors -* = 'F': H = H(1) H(2) . . . H(k) (Forward) -* = 'B': H = H(k) . . . H(2) H(1) (Backward) -* -* STOREV (input) CHARACTER*1 -* Indicates how the vectors which define the elementary -* reflectors are stored: -* = 'C': Columnwise -* = 'R': Rowwise -* -* M (input) INTEGER -* The number of rows of the matrix C. -* -* N (input) INTEGER -* The number of columns of the matrix C. -* -* K (input) INTEGER -* The order of the matrix T (= the number of elementary -* reflectors whose product defines the block reflector). -* -* V (input) DOUBLE PRECISION array, dimension -* (LDV,K) if STOREV = 'C' -* (LDV,M) if STOREV = 'R' and SIDE = 'L' -* (LDV,N) if STOREV = 'R' and SIDE = 'R' -* The matrix V. See Further Details. -* -* LDV (input) INTEGER -* The leading dimension of the array V. -* If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); -* if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); -* if STOREV = 'R', LDV >= K. -* -* T (input) DOUBLE PRECISION array, dimension (LDT,K) -* The triangular k by k matrix T in the representation of the -* block reflector. -* -* LDT (input) INTEGER -* The leading dimension of the array T. LDT >= K. -* -* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) -* On entry, the m by n matrix C. -* On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. -* -* LDC (input) INTEGER -* The leading dimension of the array C. LDC >= max(1,M). -* -* WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K) -* -* LDWORK (input) INTEGER -* The leading dimension of the array WORK. -* If SIDE = 'L', LDWORK >= max(1,N); -* if SIDE = 'R', LDWORK >= max(1,M). -* -* Further Details -* =============== -* -* The shape of the matrix V and the storage of the vectors which define -* the H(i) is best illustrated by the following example with n = 5 and -* k = 3. The elements equal to 1 are not stored; the corresponding -* array elements are modified but restored on exit. The rest of the -* array is not used. -* -* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': -* -* V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) -* ( v1 1 ) ( 1 v2 v2 v2 ) -* ( v1 v2 1 ) ( 1 v3 v3 ) -* ( v1 v2 v3 ) -* ( v1 v2 v3 ) -* -* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': -* -* V = ( v1 v2 v3 ) V = ( v1 v1 1 ) -* ( v1 v2 v3 ) ( v2 v2 v2 1 ) -* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) -* ( 1 v3 ) -* ( 1 ) -* * ===================================================================== * * .. Parameters ..