File:  [local] / rpl / lapack / lapack / dlar1v.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:56 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAR1V + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlar1v.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlar1v.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlar1v.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
   22: *                  PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
   23: *                  R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       LOGICAL            WANTNC
   27: *       INTEGER   B1, BN, N, NEGCNT, R
   28: *       DOUBLE PRECISION   GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
   29: *      $                   RQCORR, ZTZ
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * )
   33: *       DOUBLE PRECISION   D( * ), L( * ), LD( * ), LLD( * ),
   34: *      $                  WORK( * )
   35: *       DOUBLE PRECISION Z( * )
   36: *       ..
   37: *
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DLAR1V computes the (scaled) r-th column of the inverse of
   45: *> the sumbmatrix in rows B1 through BN of the tridiagonal matrix
   46: *> L D L**T - sigma I. When sigma is close to an eigenvalue, the
   47: *> computed vector is an accurate eigenvector. Usually, r corresponds
   48: *> to the index where the eigenvector is largest in magnitude.
   49: *> The following steps accomplish this computation :
   50: *> (a) Stationary qd transform,  L D L**T - sigma I = L(+) D(+) L(+)**T,
   51: *> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
   52: *> (c) Computation of the diagonal elements of the inverse of
   53: *>     L D L**T - sigma I by combining the above transforms, and choosing
   54: *>     r as the index where the diagonal of the inverse is (one of the)
   55: *>     largest in magnitude.
   56: *> (d) Computation of the (scaled) r-th column of the inverse using the
   57: *>     twisted factorization obtained by combining the top part of the
   58: *>     the stationary and the bottom part of the progressive transform.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>           The order of the matrix L D L**T.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] B1
   71: *> \verbatim
   72: *>          B1 is INTEGER
   73: *>           First index of the submatrix of L D L**T.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] BN
   77: *> \verbatim
   78: *>          BN is INTEGER
   79: *>           Last index of the submatrix of L D L**T.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] LAMBDA
   83: *> \verbatim
   84: *>          LAMBDA is DOUBLE PRECISION
   85: *>           The shift. In order to compute an accurate eigenvector,
   86: *>           LAMBDA should be a good approximation to an eigenvalue
   87: *>           of L D L**T.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] L
   91: *> \verbatim
   92: *>          L is DOUBLE PRECISION array, dimension (N-1)
   93: *>           The (n-1) subdiagonal elements of the unit bidiagonal matrix
   94: *>           L, in elements 1 to N-1.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] D
   98: *> \verbatim
   99: *>          D is DOUBLE PRECISION array, dimension (N)
  100: *>           The n diagonal elements of the diagonal matrix D.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LD
  104: *> \verbatim
  105: *>          LD is DOUBLE PRECISION array, dimension (N-1)
  106: *>           The n-1 elements L(i)*D(i).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LLD
  110: *> \verbatim
  111: *>          LLD is DOUBLE PRECISION array, dimension (N-1)
  112: *>           The n-1 elements L(i)*L(i)*D(i).
  113: *> \endverbatim
  114: *>
  115: *> \param[in] PIVMIN
  116: *> \verbatim
  117: *>          PIVMIN is DOUBLE PRECISION
  118: *>           The minimum pivot in the Sturm sequence.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] GAPTOL
  122: *> \verbatim
  123: *>          GAPTOL is DOUBLE PRECISION
  124: *>           Tolerance that indicates when eigenvector entries are negligible
  125: *>           w.r.t. their contribution to the residual.
  126: *> \endverbatim
  127: *>
  128: *> \param[in,out] Z
  129: *> \verbatim
  130: *>          Z is DOUBLE PRECISION array, dimension (N)
  131: *>           On input, all entries of Z must be set to 0.
  132: *>           On output, Z contains the (scaled) r-th column of the
  133: *>           inverse. The scaling is such that Z(R) equals 1.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] WANTNC
  137: *> \verbatim
  138: *>          WANTNC is LOGICAL
  139: *>           Specifies whether NEGCNT has to be computed.
  140: *> \endverbatim
  141: *>
  142: *> \param[out] NEGCNT
  143: *> \verbatim
  144: *>          NEGCNT is INTEGER
  145: *>           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
  146: *>           in the  matrix factorization L D L**T, and NEGCNT = -1 otherwise.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] ZTZ
  150: *> \verbatim
  151: *>          ZTZ is DOUBLE PRECISION
  152: *>           The square of the 2-norm of Z.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] MINGMA
  156: *> \verbatim
  157: *>          MINGMA is DOUBLE PRECISION
  158: *>           The reciprocal of the largest (in magnitude) diagonal
  159: *>           element of the inverse of L D L**T - sigma I.
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] R
  163: *> \verbatim
  164: *>          R is INTEGER
  165: *>           The twist index for the twisted factorization used to
  166: *>           compute Z.
  167: *>           On input, 0 <= R <= N. If R is input as 0, R is set to
  168: *>           the index where (L D L**T - sigma I)^{-1} is largest
  169: *>           in magnitude. If 1 <= R <= N, R is unchanged.
  170: *>           On output, R contains the twist index used to compute Z.
  171: *>           Ideally, R designates the position of the maximum entry in the
  172: *>           eigenvector.
  173: *> \endverbatim
  174: *>
  175: *> \param[out] ISUPPZ
  176: *> \verbatim
  177: *>          ISUPPZ is INTEGER array, dimension (2)
  178: *>           The support of the vector in Z, i.e., the vector Z is
  179: *>           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
  180: *> \endverbatim
  181: *>
  182: *> \param[out] NRMINV
  183: *> \verbatim
  184: *>          NRMINV is DOUBLE PRECISION
  185: *>           NRMINV = 1/SQRT( ZTZ )
  186: *> \endverbatim
  187: *>
  188: *> \param[out] RESID
  189: *> \verbatim
  190: *>          RESID is DOUBLE PRECISION
  191: *>           The residual of the FP vector.
  192: *>           RESID = ABS( MINGMA )/SQRT( ZTZ )
  193: *> \endverbatim
  194: *>
  195: *> \param[out] RQCORR
  196: *> \verbatim
  197: *>          RQCORR is DOUBLE PRECISION
  198: *>           The Rayleigh Quotient correction to LAMBDA.
  199: *>           RQCORR = MINGMA*TMP
  200: *> \endverbatim
  201: *>
  202: *> \param[out] WORK
  203: *> \verbatim
  204: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  205: *> \endverbatim
  206: *
  207: *  Authors:
  208: *  ========
  209: *
  210: *> \author Univ. of Tennessee
  211: *> \author Univ. of California Berkeley
  212: *> \author Univ. of Colorado Denver
  213: *> \author NAG Ltd.
  214: *
  215: *> \ingroup doubleOTHERauxiliary
  216: *
  217: *> \par Contributors:
  218: *  ==================
  219: *>
  220: *> Beresford Parlett, University of California, Berkeley, USA \n
  221: *> Jim Demmel, University of California, Berkeley, USA \n
  222: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  223: *> Osni Marques, LBNL/NERSC, USA \n
  224: *> Christof Voemel, University of California, Berkeley, USA
  225: *
  226: *  =====================================================================
  227:       SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
  228:      $           PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
  229:      $           R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
  230: *
  231: *  -- LAPACK auxiliary routine --
  232: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  233: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  234: *
  235: *     .. Scalar Arguments ..
  236:       LOGICAL            WANTNC
  237:       INTEGER   B1, BN, N, NEGCNT, R
  238:       DOUBLE PRECISION   GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
  239:      $                   RQCORR, ZTZ
  240: *     ..
  241: *     .. Array Arguments ..
  242:       INTEGER            ISUPPZ( * )
  243:       DOUBLE PRECISION   D( * ), L( * ), LD( * ), LLD( * ),
  244:      $                  WORK( * )
  245:       DOUBLE PRECISION Z( * )
  246: *     ..
  247: *
  248: *  =====================================================================
  249: *
  250: *     .. Parameters ..
  251:       DOUBLE PRECISION   ZERO, ONE
  252:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  253: 
  254: *     ..
  255: *     .. Local Scalars ..
  256:       LOGICAL            SAWNAN1, SAWNAN2
  257:       INTEGER            I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1,
  258:      $                   R2
  259:       DOUBLE PRECISION   DMINUS, DPLUS, EPS, S, TMP
  260: *     ..
  261: *     .. External Functions ..
  262:       LOGICAL DISNAN
  263:       DOUBLE PRECISION   DLAMCH
  264:       EXTERNAL           DISNAN, DLAMCH
  265: *     ..
  266: *     .. Intrinsic Functions ..
  267:       INTRINSIC          ABS
  268: *     ..
  269: *     .. Executable Statements ..
  270: *
  271:       EPS = DLAMCH( 'Precision' )
  272: 
  273: 
  274:       IF( R.EQ.0 ) THEN
  275:          R1 = B1
  276:          R2 = BN
  277:       ELSE
  278:          R1 = R
  279:          R2 = R
  280:       END IF
  281: 
  282: *     Storage for LPLUS
  283:       INDLPL = 0
  284: *     Storage for UMINUS
  285:       INDUMN = N
  286:       INDS = 2*N + 1
  287:       INDP = 3*N + 1
  288: 
  289:       IF( B1.EQ.1 ) THEN
  290:          WORK( INDS ) = ZERO
  291:       ELSE
  292:          WORK( INDS+B1-1 ) = LLD( B1-1 )
  293:       END IF
  294: 
  295: *
  296: *     Compute the stationary transform (using the differential form)
  297: *     until the index R2.
  298: *
  299:       SAWNAN1 = .FALSE.
  300:       NEG1 = 0
  301:       S = WORK( INDS+B1-1 ) - LAMBDA
  302:       DO 50 I = B1, R1 - 1
  303:          DPLUS = D( I ) + S
  304:          WORK( INDLPL+I ) = LD( I ) / DPLUS
  305:          IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
  306:          WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
  307:          S = WORK( INDS+I ) - LAMBDA
  308:  50   CONTINUE
  309:       SAWNAN1 = DISNAN( S )
  310:       IF( SAWNAN1 ) GOTO 60
  311:       DO 51 I = R1, R2 - 1
  312:          DPLUS = D( I ) + S
  313:          WORK( INDLPL+I ) = LD( I ) / DPLUS
  314:          WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
  315:          S = WORK( INDS+I ) - LAMBDA
  316:  51   CONTINUE
  317:       SAWNAN1 = DISNAN( S )
  318: *
  319:  60   CONTINUE
  320:       IF( SAWNAN1 ) THEN
  321: *        Runs a slower version of the above loop if a NaN is detected
  322:          NEG1 = 0
  323:          S = WORK( INDS+B1-1 ) - LAMBDA
  324:          DO 70 I = B1, R1 - 1
  325:             DPLUS = D( I ) + S
  326:             IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
  327:             WORK( INDLPL+I ) = LD( I ) / DPLUS
  328:             IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
  329:             WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
  330:             IF( WORK( INDLPL+I ).EQ.ZERO )
  331:      $                      WORK( INDS+I ) = LLD( I )
  332:             S = WORK( INDS+I ) - LAMBDA
  333:  70      CONTINUE
  334:          DO 71 I = R1, R2 - 1
  335:             DPLUS = D( I ) + S
  336:             IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
  337:             WORK( INDLPL+I ) = LD( I ) / DPLUS
  338:             WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
  339:             IF( WORK( INDLPL+I ).EQ.ZERO )
  340:      $                      WORK( INDS+I ) = LLD( I )
  341:             S = WORK( INDS+I ) - LAMBDA
  342:  71      CONTINUE
  343:       END IF
  344: *
  345: *     Compute the progressive transform (using the differential form)
  346: *     until the index R1
  347: *
  348:       SAWNAN2 = .FALSE.
  349:       NEG2 = 0
  350:       WORK( INDP+BN-1 ) = D( BN ) - LAMBDA
  351:       DO 80 I = BN - 1, R1, -1
  352:          DMINUS = LLD( I ) + WORK( INDP+I )
  353:          TMP = D( I ) / DMINUS
  354:          IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
  355:          WORK( INDUMN+I ) = L( I )*TMP
  356:          WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
  357:  80   CONTINUE
  358:       TMP = WORK( INDP+R1-1 )
  359:       SAWNAN2 = DISNAN( TMP )
  360: 
  361:       IF( SAWNAN2 ) THEN
  362: *        Runs a slower version of the above loop if a NaN is detected
  363:          NEG2 = 0
  364:          DO 100 I = BN-1, R1, -1
  365:             DMINUS = LLD( I ) + WORK( INDP+I )
  366:             IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN
  367:             TMP = D( I ) / DMINUS
  368:             IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
  369:             WORK( INDUMN+I ) = L( I )*TMP
  370:             WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
  371:             IF( TMP.EQ.ZERO )
  372:      $          WORK( INDP+I-1 ) = D( I ) - LAMBDA
  373:  100     CONTINUE
  374:       END IF
  375: *
  376: *     Find the index (from R1 to R2) of the largest (in magnitude)
  377: *     diagonal element of the inverse
  378: *
  379:       MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 )
  380:       IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1
  381:       IF( WANTNC ) THEN
  382:          NEGCNT = NEG1 + NEG2
  383:       ELSE
  384:          NEGCNT = -1
  385:       ENDIF
  386:       IF( ABS(MINGMA).EQ.ZERO )
  387:      $   MINGMA = EPS*WORK( INDS+R1-1 )
  388:       R = R1
  389:       DO 110 I = R1, R2 - 1
  390:          TMP = WORK( INDS+I ) + WORK( INDP+I )
  391:          IF( TMP.EQ.ZERO )
  392:      $      TMP = EPS*WORK( INDS+I )
  393:          IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN
  394:             MINGMA = TMP
  395:             R = I + 1
  396:          END IF
  397:  110  CONTINUE
  398: *
  399: *     Compute the FP vector: solve N^T v = e_r
  400: *
  401:       ISUPPZ( 1 ) = B1
  402:       ISUPPZ( 2 ) = BN
  403:       Z( R ) = ONE
  404:       ZTZ = ONE
  405: *
  406: *     Compute the FP vector upwards from R
  407: *
  408:       IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
  409:          DO 210 I = R-1, B1, -1
  410:             Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
  411:             IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
  412:      $           THEN
  413:                Z( I ) = ZERO
  414:                ISUPPZ( 1 ) = I + 1
  415:                GOTO 220
  416:             ENDIF
  417:             ZTZ = ZTZ + Z( I )*Z( I )
  418:  210     CONTINUE
  419:  220     CONTINUE
  420:       ELSE
  421: *        Run slower loop if NaN occurred.
  422:          DO 230 I = R - 1, B1, -1
  423:             IF( Z( I+1 ).EQ.ZERO ) THEN
  424:                Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
  425:             ELSE
  426:                Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
  427:             END IF
  428:             IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
  429:      $           THEN
  430:                Z( I ) = ZERO
  431:                ISUPPZ( 1 ) = I + 1
  432:                GO TO 240
  433:             END IF
  434:             ZTZ = ZTZ + Z( I )*Z( I )
  435:  230     CONTINUE
  436:  240     CONTINUE
  437:       ENDIF
  438: 
  439: *     Compute the FP vector downwards from R in blocks of size BLKSIZ
  440:       IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
  441:          DO 250 I = R, BN-1
  442:             Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
  443:             IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
  444:      $         THEN
  445:                Z( I+1 ) = ZERO
  446:                ISUPPZ( 2 ) = I
  447:                GO TO 260
  448:             END IF
  449:             ZTZ = ZTZ + Z( I+1 )*Z( I+1 )
  450:  250     CONTINUE
  451:  260     CONTINUE
  452:       ELSE
  453: *        Run slower loop if NaN occurred.
  454:          DO 270 I = R, BN - 1
  455:             IF( Z( I ).EQ.ZERO ) THEN
  456:                Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 )
  457:             ELSE
  458:                Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
  459:             END IF
  460:             IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
  461:      $           THEN
  462:                Z( I+1 ) = ZERO
  463:                ISUPPZ( 2 ) = I
  464:                GO TO 280
  465:             END IF
  466:             ZTZ = ZTZ + Z( I+1 )*Z( I+1 )
  467:  270     CONTINUE
  468:  280     CONTINUE
  469:       END IF
  470: *
  471: *     Compute quantities for convergence test
  472: *
  473:       TMP = ONE / ZTZ
  474:       NRMINV = SQRT( TMP )
  475:       RESID = ABS( MINGMA )*NRMINV
  476:       RQCORR = MINGMA*TMP
  477: *
  478: *
  479:       RETURN
  480: *
  481: *     End of DLAR1V
  482: *
  483:       END

CVSweb interface <joel.bertrand@systella.fr>