File:  [local] / rpl / lapack / lapack / dlaqr5.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:58 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAQR5 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
   22: *                          SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
   23: *                          LDU, NV, WV, LDWV, NH, WH, LDWH )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
   27: *      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
   32: *      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *>    DLAQR5, called by DLAQR0, performs a
   43: *>    single small-bulge multi-shift QR sweep.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] WANTT
   50: *> \verbatim
   51: *>          WANTT is LOGICAL
   52: *>             WANTT = .true. if the quasi-triangular Schur factor
   53: *>             is being computed.  WANTT is set to .false. otherwise.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] WANTZ
   57: *> \verbatim
   58: *>          WANTZ is LOGICAL
   59: *>             WANTZ = .true. if the orthogonal Schur factor is being
   60: *>             computed.  WANTZ is set to .false. otherwise.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] KACC22
   64: *> \verbatim
   65: *>          KACC22 is INTEGER with value 0, 1, or 2.
   66: *>             Specifies the computation mode of far-from-diagonal
   67: *>             orthogonal updates.
   68: *>        = 0: DLAQR5 does not accumulate reflections and does not
   69: *>             use matrix-matrix multiply to update far-from-diagonal
   70: *>             matrix entries.
   71: *>        = 1: DLAQR5 accumulates reflections and uses matrix-matrix
   72: *>             multiply to update the far-from-diagonal matrix entries.
   73: *>        = 2: DLAQR5 accumulates reflections, uses matrix-matrix
   74: *>             multiply to update the far-from-diagonal matrix entries,
   75: *>             and takes advantage of 2-by-2 block structure during
   76: *>             matrix multiplies.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>             N is the order of the Hessenberg matrix H upon which this
   83: *>             subroutine operates.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] KTOP
   87: *> \verbatim
   88: *>          KTOP is INTEGER
   89: *> \endverbatim
   90: *>
   91: *> \param[in] KBOT
   92: *> \verbatim
   93: *>          KBOT is INTEGER
   94: *>             These are the first and last rows and columns of an
   95: *>             isolated diagonal block upon which the QR sweep is to be
   96: *>             applied. It is assumed without a check that
   97: *>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
   98: *>             and
   99: *>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] NSHFTS
  103: *> \verbatim
  104: *>          NSHFTS is INTEGER
  105: *>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
  106: *>             must be positive and even.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] SR
  110: *> \verbatim
  111: *>          SR is DOUBLE PRECISION array, dimension (NSHFTS)
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] SI
  115: *> \verbatim
  116: *>          SI is DOUBLE PRECISION array, dimension (NSHFTS)
  117: *>             SR contains the real parts and SI contains the imaginary
  118: *>             parts of the NSHFTS shifts of origin that define the
  119: *>             multi-shift QR sweep.  On output SR and SI may be
  120: *>             reordered.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] H
  124: *> \verbatim
  125: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
  126: *>             On input H contains a Hessenberg matrix.  On output a
  127: *>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
  128: *>             to the isolated diagonal block in rows and columns KTOP
  129: *>             through KBOT.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDH
  133: *> \verbatim
  134: *>          LDH is INTEGER
  135: *>             LDH is the leading dimension of H just as declared in the
  136: *>             calling procedure.  LDH.GE.MAX(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[in] ILOZ
  140: *> \verbatim
  141: *>          ILOZ is INTEGER
  142: *> \endverbatim
  143: *>
  144: *> \param[in] IHIZ
  145: *> \verbatim
  146: *>          IHIZ is INTEGER
  147: *>             Specify the rows of Z to which transformations must be
  148: *>             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
  149: *> \endverbatim
  150: *>
  151: *> \param[in,out] Z
  152: *> \verbatim
  153: *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHIZ)
  154: *>             If WANTZ = .TRUE., then the QR Sweep orthogonal
  155: *>             similarity transformation is accumulated into
  156: *>             Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  157: *>             If WANTZ = .FALSE., then Z is unreferenced.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDZ
  161: *> \verbatim
  162: *>          LDZ is INTEGER
  163: *>             LDA is the leading dimension of Z just as declared in
  164: *>             the calling procedure. LDZ.GE.N.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] V
  168: *> \verbatim
  169: *>          V is DOUBLE PRECISION array, dimension (LDV,NSHFTS/2)
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDV
  173: *> \verbatim
  174: *>          LDV is INTEGER
  175: *>             LDV is the leading dimension of V as declared in the
  176: *>             calling procedure.  LDV.GE.3.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] U
  180: *> \verbatim
  181: *>          U is DOUBLE PRECISION array, dimension (LDU,3*NSHFTS-3)
  182: *> \endverbatim
  183: *>
  184: *> \param[in] LDU
  185: *> \verbatim
  186: *>          LDU is INTEGER
  187: *>             LDU is the leading dimension of U just as declared in the
  188: *>             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
  189: *> \endverbatim
  190: *>
  191: *> \param[in] NH
  192: *> \verbatim
  193: *>          NH is INTEGER
  194: *>             NH is the number of columns in array WH available for
  195: *>             workspace. NH.GE.1.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] WH
  199: *> \verbatim
  200: *>          WH is DOUBLE PRECISION array, dimension (LDWH,NH)
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDWH
  204: *> \verbatim
  205: *>          LDWH is INTEGER
  206: *>             Leading dimension of WH just as declared in the
  207: *>             calling procedure.  LDWH.GE.3*NSHFTS-3.
  208: *> \endverbatim
  209: *>
  210: *> \param[in] NV
  211: *> \verbatim
  212: *>          NV is INTEGER
  213: *>             NV is the number of rows in WV agailable for workspace.
  214: *>             NV.GE.1.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] WV
  218: *> \verbatim
  219: *>          WV is DOUBLE PRECISION array, dimension (LDWV,3*NSHFTS-3)
  220: *> \endverbatim
  221: *>
  222: *> \param[in] LDWV
  223: *> \verbatim
  224: *>          LDWV is INTEGER
  225: *>             LDWV is the leading dimension of WV as declared in the
  226: *>             in the calling subroutine.  LDWV.GE.NV.
  227: *> \endverbatim
  228: *
  229: *  Authors:
  230: *  ========
  231: *
  232: *> \author Univ. of Tennessee
  233: *> \author Univ. of California Berkeley
  234: *> \author Univ. of Colorado Denver
  235: *> \author NAG Ltd.
  236: *
  237: *> \date June 2016
  238: *
  239: *> \ingroup doubleOTHERauxiliary
  240: *
  241: *> \par Contributors:
  242: *  ==================
  243: *>
  244: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  245: *>       University of Kansas, USA
  246: *
  247: *> \par References:
  248: *  ================
  249: *>
  250: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  251: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  252: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  253: *>       929--947, 2002.
  254: *>
  255: *  =====================================================================
  256:       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
  257:      $                   SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
  258:      $                   LDU, NV, WV, LDWV, NH, WH, LDWH )
  259: *
  260: *  -- LAPACK auxiliary routine (version 3.7.1) --
  261: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  262: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  263: *     June 2016
  264: *
  265: *     .. Scalar Arguments ..
  266:       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
  267:      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
  268:       LOGICAL            WANTT, WANTZ
  269: *     ..
  270: *     .. Array Arguments ..
  271:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
  272:      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
  273:      $                   Z( LDZ, * )
  274: *     ..
  275: *
  276: *  ================================================================
  277: *     .. Parameters ..
  278:       DOUBLE PRECISION   ZERO, ONE
  279:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  280: *     ..
  281: *     .. Local Scalars ..
  282:       DOUBLE PRECISION   ALPHA, BETA, H11, H12, H21, H22, REFSUM,
  283:      $                   SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
  284:      $                   ULP
  285:       INTEGER            I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
  286:      $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
  287:      $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
  288:      $                   NS, NU
  289:       LOGICAL            ACCUM, BLK22, BMP22
  290: *     ..
  291: *     .. External Functions ..
  292:       DOUBLE PRECISION   DLAMCH
  293:       EXTERNAL           DLAMCH
  294: *     ..
  295: *     .. Intrinsic Functions ..
  296: *
  297:       INTRINSIC          ABS, DBLE, MAX, MIN, MOD
  298: *     ..
  299: *     .. Local Arrays ..
  300:       DOUBLE PRECISION   VT( 3 )
  301: *     ..
  302: *     .. External Subroutines ..
  303:       EXTERNAL           DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
  304:      $                   DTRMM
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308: *     ==== If there are no shifts, then there is nothing to do. ====
  309: *
  310:       IF( NSHFTS.LT.2 )
  311:      $   RETURN
  312: *
  313: *     ==== If the active block is empty or 1-by-1, then there
  314: *     .    is nothing to do. ====
  315: *
  316:       IF( KTOP.GE.KBOT )
  317:      $   RETURN
  318: *
  319: *     ==== Shuffle shifts into pairs of real shifts and pairs
  320: *     .    of complex conjugate shifts assuming complex
  321: *     .    conjugate shifts are already adjacent to one
  322: *     .    another. ====
  323: *
  324:       DO 10 I = 1, NSHFTS - 2, 2
  325:          IF( SI( I ).NE.-SI( I+1 ) ) THEN
  326: *
  327:             SWAP = SR( I )
  328:             SR( I ) = SR( I+1 )
  329:             SR( I+1 ) = SR( I+2 )
  330:             SR( I+2 ) = SWAP
  331: *
  332:             SWAP = SI( I )
  333:             SI( I ) = SI( I+1 )
  334:             SI( I+1 ) = SI( I+2 )
  335:             SI( I+2 ) = SWAP
  336:          END IF
  337:    10 CONTINUE
  338: *
  339: *     ==== NSHFTS is supposed to be even, but if it is odd,
  340: *     .    then simply reduce it by one.  The shuffle above
  341: *     .    ensures that the dropped shift is real and that
  342: *     .    the remaining shifts are paired. ====
  343: *
  344:       NS = NSHFTS - MOD( NSHFTS, 2 )
  345: *
  346: *     ==== Machine constants for deflation ====
  347: *
  348:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  349:       SAFMAX = ONE / SAFMIN
  350:       CALL DLABAD( SAFMIN, SAFMAX )
  351:       ULP = DLAMCH( 'PRECISION' )
  352:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  353: *
  354: *     ==== Use accumulated reflections to update far-from-diagonal
  355: *     .    entries ? ====
  356: *
  357:       ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
  358: *
  359: *     ==== If so, exploit the 2-by-2 block structure? ====
  360: *
  361:       BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
  362: *
  363: *     ==== clear trash ====
  364: *
  365:       IF( KTOP+2.LE.KBOT )
  366:      $   H( KTOP+2, KTOP ) = ZERO
  367: *
  368: *     ==== NBMPS = number of 2-shift bulges in the chain ====
  369: *
  370:       NBMPS = NS / 2
  371: *
  372: *     ==== KDU = width of slab ====
  373: *
  374:       KDU = 6*NBMPS - 3
  375: *
  376: *     ==== Create and chase chains of NBMPS bulges ====
  377: *
  378:       DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
  379:          NDCOL = INCOL + KDU
  380:          IF( ACCUM )
  381:      $      CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
  382: *
  383: *        ==== Near-the-diagonal bulge chase.  The following loop
  384: *        .    performs the near-the-diagonal part of a small bulge
  385: *        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
  386: *        .    chunk extends from column INCOL to column NDCOL
  387: *        .    (including both column INCOL and column NDCOL). The
  388: *        .    following loop chases a 3*NBMPS column long chain of
  389: *        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
  390: *        .    may be less than KTOP and and NDCOL may be greater than
  391: *        .    KBOT indicating phantom columns from which to chase
  392: *        .    bulges before they are actually introduced or to which
  393: *        .    to chase bulges beyond column KBOT.)  ====
  394: *
  395:          DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
  396: *
  397: *           ==== Bulges number MTOP to MBOT are active double implicit
  398: *           .    shift bulges.  There may or may not also be small
  399: *           .    2-by-2 bulge, if there is room.  The inactive bulges
  400: *           .    (if any) must wait until the active bulges have moved
  401: *           .    down the diagonal to make room.  The phantom matrix
  402: *           .    paradigm described above helps keep track.  ====
  403: *
  404:             MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
  405:             MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
  406:             M22 = MBOT + 1
  407:             BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
  408:      $              ( KBOT-2 )
  409: *
  410: *           ==== Generate reflections to chase the chain right
  411: *           .    one column.  (The minimum value of K is KTOP-1.) ====
  412: *
  413:             DO 20 M = MTOP, MBOT
  414:                K = KRCOL + 3*( M-1 )
  415:                IF( K.EQ.KTOP-1 ) THEN
  416:                   CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
  417:      $                         SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
  418:      $                         V( 1, M ) )
  419:                   ALPHA = V( 1, M )
  420:                   CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
  421:                ELSE
  422:                   BETA = H( K+1, K )
  423:                   V( 2, M ) = H( K+2, K )
  424:                   V( 3, M ) = H( K+3, K )
  425:                   CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
  426: *
  427: *                 ==== A Bulge may collapse because of vigilant
  428: *                 .    deflation or destructive underflow.  In the
  429: *                 .    underflow case, try the two-small-subdiagonals
  430: *                 .    trick to try to reinflate the bulge.  ====
  431: *
  432:                   IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
  433:      $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
  434: *
  435: *                    ==== Typical case: not collapsed (yet). ====
  436: *
  437:                      H( K+1, K ) = BETA
  438:                      H( K+2, K ) = ZERO
  439:                      H( K+3, K ) = ZERO
  440:                   ELSE
  441: *
  442: *                    ==== Atypical case: collapsed.  Attempt to
  443: *                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
  444: *                    .    If the fill resulting from the new
  445: *                    .    reflector is too large, then abandon it.
  446: *                    .    Otherwise, use the new one. ====
  447: *
  448:                      CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
  449:      $                            SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
  450:      $                            VT )
  451:                      ALPHA = VT( 1 )
  452:                      CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
  453:                      REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
  454:      $                        H( K+2, K ) )
  455: *
  456:                      IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
  457:      $                   ABS( REFSUM*VT( 3 ) ).GT.ULP*
  458:      $                   ( ABS( H( K, K ) )+ABS( H( K+1,
  459:      $                   K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
  460: *
  461: *                       ==== Starting a new bulge here would
  462: *                       .    create non-negligible fill.  Use
  463: *                       .    the old one with trepidation. ====
  464: *
  465:                         H( K+1, K ) = BETA
  466:                         H( K+2, K ) = ZERO
  467:                         H( K+3, K ) = ZERO
  468:                      ELSE
  469: *
  470: *                       ==== Stating a new bulge here would
  471: *                       .    create only negligible fill.
  472: *                       .    Replace the old reflector with
  473: *                       .    the new one. ====
  474: *
  475:                         H( K+1, K ) = H( K+1, K ) - REFSUM
  476:                         H( K+2, K ) = ZERO
  477:                         H( K+3, K ) = ZERO
  478:                         V( 1, M ) = VT( 1 )
  479:                         V( 2, M ) = VT( 2 )
  480:                         V( 3, M ) = VT( 3 )
  481:                      END IF
  482:                   END IF
  483:                END IF
  484:    20       CONTINUE
  485: *
  486: *           ==== Generate a 2-by-2 reflection, if needed. ====
  487: *
  488:             K = KRCOL + 3*( M22-1 )
  489:             IF( BMP22 ) THEN
  490:                IF( K.EQ.KTOP-1 ) THEN
  491:                   CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
  492:      $                         SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
  493:      $                         V( 1, M22 ) )
  494:                   BETA = V( 1, M22 )
  495:                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  496:                ELSE
  497:                   BETA = H( K+1, K )
  498:                   V( 2, M22 ) = H( K+2, K )
  499:                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  500:                   H( K+1, K ) = BETA
  501:                   H( K+2, K ) = ZERO
  502:                END IF
  503:             END IF
  504: *
  505: *           ==== Multiply H by reflections from the left ====
  506: *
  507:             IF( ACCUM ) THEN
  508:                JBOT = MIN( NDCOL, KBOT )
  509:             ELSE IF( WANTT ) THEN
  510:                JBOT = N
  511:             ELSE
  512:                JBOT = KBOT
  513:             END IF
  514:             DO 40 J = MAX( KTOP, KRCOL ), JBOT
  515:                MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
  516:                DO 30 M = MTOP, MEND
  517:                   K = KRCOL + 3*( M-1 )
  518:                   REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
  519:      $                     H( K+2, J )+V( 3, M )*H( K+3, J ) )
  520:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  521:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
  522:                   H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
  523:    30          CONTINUE
  524:    40       CONTINUE
  525:             IF( BMP22 ) THEN
  526:                K = KRCOL + 3*( M22-1 )
  527:                DO 50 J = MAX( K+1, KTOP ), JBOT
  528:                   REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
  529:      $                     H( K+2, J ) )
  530:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  531:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
  532:    50          CONTINUE
  533:             END IF
  534: *
  535: *           ==== Multiply H by reflections from the right.
  536: *           .    Delay filling in the last row until the
  537: *           .    vigilant deflation check is complete. ====
  538: *
  539:             IF( ACCUM ) THEN
  540:                JTOP = MAX( KTOP, INCOL )
  541:             ELSE IF( WANTT ) THEN
  542:                JTOP = 1
  543:             ELSE
  544:                JTOP = KTOP
  545:             END IF
  546:             DO 90 M = MTOP, MBOT
  547:                IF( V( 1, M ).NE.ZERO ) THEN
  548:                   K = KRCOL + 3*( M-1 )
  549:                   DO 60 J = JTOP, MIN( KBOT, K+3 )
  550:                      REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
  551:      $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
  552:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  553:                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
  554:                      H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
  555:    60             CONTINUE
  556: *
  557:                   IF( ACCUM ) THEN
  558: *
  559: *                    ==== Accumulate U. (If necessary, update Z later
  560: *                    .    with with an efficient matrix-matrix
  561: *                    .    multiply.) ====
  562: *
  563:                      KMS = K - INCOL
  564:                      DO 70 J = MAX( 1, KTOP-INCOL ), KDU
  565:                         REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
  566:      $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
  567:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  568:                         U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
  569:                         U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
  570:    70                CONTINUE
  571:                   ELSE IF( WANTZ ) THEN
  572: *
  573: *                    ==== U is not accumulated, so update Z
  574: *                    .    now by multiplying by reflections
  575: *                    .    from the right. ====
  576: *
  577:                      DO 80 J = ILOZ, IHIZ
  578:                         REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
  579:      $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
  580:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  581:                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
  582:                         Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
  583:    80                CONTINUE
  584:                   END IF
  585:                END IF
  586:    90       CONTINUE
  587: *
  588: *           ==== Special case: 2-by-2 reflection (if needed) ====
  589: *
  590:             K = KRCOL + 3*( M22-1 )
  591:             IF( BMP22 ) THEN
  592:                IF ( V( 1, M22 ).NE.ZERO ) THEN
  593:                   DO 100 J = JTOP, MIN( KBOT, K+3 )
  594:                      REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
  595:      $                        H( J, K+2 ) )
  596:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  597:                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
  598:   100             CONTINUE
  599: *
  600:                   IF( ACCUM ) THEN
  601:                      KMS = K - INCOL
  602:                      DO 110 J = MAX( 1, KTOP-INCOL ), KDU
  603:                         REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
  604:      $                           V( 2, M22 )*U( J, KMS+2 ) )
  605:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  606:                         U( J, KMS+2 ) = U( J, KMS+2 ) -
  607:      $                                  REFSUM*V( 2, M22 )
  608:   110             CONTINUE
  609:                   ELSE IF( WANTZ ) THEN
  610:                      DO 120 J = ILOZ, IHIZ
  611:                         REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
  612:      $                           Z( J, K+2 ) )
  613:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  614:                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
  615:   120                CONTINUE
  616:                   END IF
  617:                END IF
  618:             END IF
  619: *
  620: *           ==== Vigilant deflation check ====
  621: *
  622:             MSTART = MTOP
  623:             IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
  624:      $         MSTART = MSTART + 1
  625:             MEND = MBOT
  626:             IF( BMP22 )
  627:      $         MEND = MEND + 1
  628:             IF( KRCOL.EQ.KBOT-2 )
  629:      $         MEND = MEND + 1
  630:             DO 130 M = MSTART, MEND
  631:                K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
  632: *
  633: *              ==== The following convergence test requires that
  634: *              .    the tradition small-compared-to-nearby-diagonals
  635: *              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
  636: *              .    criteria both be satisfied.  The latter improves
  637: *              .    accuracy in some examples. Falling back on an
  638: *              .    alternate convergence criterion when TST1 or TST2
  639: *              .    is zero (as done here) is traditional but probably
  640: *              .    unnecessary. ====
  641: *
  642:                IF( H( K+1, K ).NE.ZERO ) THEN
  643:                   TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
  644:                   IF( TST1.EQ.ZERO ) THEN
  645:                      IF( K.GE.KTOP+1 )
  646:      $                  TST1 = TST1 + ABS( H( K, K-1 ) )
  647:                      IF( K.GE.KTOP+2 )
  648:      $                  TST1 = TST1 + ABS( H( K, K-2 ) )
  649:                      IF( K.GE.KTOP+3 )
  650:      $                  TST1 = TST1 + ABS( H( K, K-3 ) )
  651:                      IF( K.LE.KBOT-2 )
  652:      $                  TST1 = TST1 + ABS( H( K+2, K+1 ) )
  653:                      IF( K.LE.KBOT-3 )
  654:      $                  TST1 = TST1 + ABS( H( K+3, K+1 ) )
  655:                      IF( K.LE.KBOT-4 )
  656:      $                  TST1 = TST1 + ABS( H( K+4, K+1 ) )
  657:                   END IF
  658:                   IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
  659:      $                 THEN
  660:                      H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
  661:                      H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
  662:                      H11 = MAX( ABS( H( K+1, K+1 ) ),
  663:      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
  664:                      H22 = MIN( ABS( H( K+1, K+1 ) ),
  665:      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
  666:                      SCL = H11 + H12
  667:                      TST2 = H22*( H11 / SCL )
  668: *
  669:                      IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
  670:      $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
  671:                   END IF
  672:                END IF
  673:   130       CONTINUE
  674: *
  675: *           ==== Fill in the last row of each bulge. ====
  676: *
  677:             MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
  678:             DO 140 M = MTOP, MEND
  679:                K = KRCOL + 3*( M-1 )
  680:                REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
  681:                H( K+4, K+1 ) = -REFSUM
  682:                H( K+4, K+2 ) = -REFSUM*V( 2, M )
  683:                H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
  684:   140       CONTINUE
  685: *
  686: *           ==== End of near-the-diagonal bulge chase. ====
  687: *
  688:   150    CONTINUE
  689: *
  690: *        ==== Use U (if accumulated) to update far-from-diagonal
  691: *        .    entries in H.  If required, use U to update Z as
  692: *        .    well. ====
  693: *
  694:          IF( ACCUM ) THEN
  695:             IF( WANTT ) THEN
  696:                JTOP = 1
  697:                JBOT = N
  698:             ELSE
  699:                JTOP = KTOP
  700:                JBOT = KBOT
  701:             END IF
  702:             IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
  703:      $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
  704: *
  705: *              ==== Updates not exploiting the 2-by-2 block
  706: *              .    structure of U.  K1 and NU keep track of
  707: *              .    the location and size of U in the special
  708: *              .    cases of introducing bulges and chasing
  709: *              .    bulges off the bottom.  In these special
  710: *              .    cases and in case the number of shifts
  711: *              .    is NS = 2, there is no 2-by-2 block
  712: *              .    structure to exploit.  ====
  713: *
  714:                K1 = MAX( 1, KTOP-INCOL )
  715:                NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
  716: *
  717: *              ==== Horizontal Multiply ====
  718: *
  719:                DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  720:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  721:                   CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
  722:      $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
  723:      $                        LDWH )
  724:                   CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
  725:      $                         H( INCOL+K1, JCOL ), LDH )
  726:   160          CONTINUE
  727: *
  728: *              ==== Vertical multiply ====
  729: *
  730:                DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
  731:                   JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
  732:                   CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  733:      $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
  734:      $                        LDU, ZERO, WV, LDWV )
  735:                   CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
  736:      $                         H( JROW, INCOL+K1 ), LDH )
  737:   170          CONTINUE
  738: *
  739: *              ==== Z multiply (also vertical) ====
  740: *
  741:                IF( WANTZ ) THEN
  742:                   DO 180 JROW = ILOZ, IHIZ, NV
  743:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  744:                      CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  745:      $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
  746:      $                           LDU, ZERO, WV, LDWV )
  747:                      CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
  748:      $                            Z( JROW, INCOL+K1 ), LDZ )
  749:   180             CONTINUE
  750:                END IF
  751:             ELSE
  752: *
  753: *              ==== Updates exploiting U's 2-by-2 block structure.
  754: *              .    (I2, I4, J2, J4 are the last rows and columns
  755: *              .    of the blocks.) ====
  756: *
  757:                I2 = ( KDU+1 ) / 2
  758:                I4 = KDU
  759:                J2 = I4 - I2
  760:                J4 = KDU
  761: *
  762: *              ==== KZS and KNZ deal with the band of zeros
  763: *              .    along the diagonal of one of the triangular
  764: *              .    blocks. ====
  765: *
  766:                KZS = ( J4-J2 ) - ( NS+1 )
  767:                KNZ = NS + 1
  768: *
  769: *              ==== Horizontal multiply ====
  770: *
  771:                DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  772:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  773: *
  774: *                 ==== Copy bottom of H to top+KZS of scratch ====
  775: *                  (The first KZS rows get multiplied by zero.) ====
  776: *
  777:                   CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
  778:      $                         LDH, WH( KZS+1, 1 ), LDWH )
  779: *
  780: *                 ==== Multiply by U21**T ====
  781: *
  782:                   CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
  783:                   CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
  784:      $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
  785:      $                        LDWH )
  786: *
  787: *                 ==== Multiply top of H by U11**T ====
  788: *
  789:                   CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
  790:      $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
  791: *
  792: *                 ==== Copy top of H to bottom of WH ====
  793: *
  794:                   CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
  795:      $                         WH( I2+1, 1 ), LDWH )
  796: *
  797: *                 ==== Multiply by U21**T ====
  798: *
  799:                   CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
  800:      $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
  801: *
  802: *                 ==== Multiply by U22 ====
  803: *
  804:                   CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
  805:      $                        U( J2+1, I2+1 ), LDU,
  806:      $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
  807:      $                        WH( I2+1, 1 ), LDWH )
  808: *
  809: *                 ==== Copy it back ====
  810: *
  811:                   CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
  812:      $                         H( INCOL+1, JCOL ), LDH )
  813:   190          CONTINUE
  814: *
  815: *              ==== Vertical multiply ====
  816: *
  817:                DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
  818:                   JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
  819: *
  820: *                 ==== Copy right of H to scratch (the first KZS
  821: *                 .    columns get multiplied by zero) ====
  822: *
  823:                   CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
  824:      $                         LDH, WV( 1, 1+KZS ), LDWV )
  825: *
  826: *                 ==== Multiply by U21 ====
  827: *
  828:                   CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
  829:                   CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  830:      $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  831:      $                        LDWV )
  832: *
  833: *                 ==== Multiply by U11 ====
  834: *
  835:                   CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  836:      $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
  837:      $                        LDWV )
  838: *
  839: *                 ==== Copy left of H to right of scratch ====
  840: *
  841:                   CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
  842:      $                         WV( 1, 1+I2 ), LDWV )
  843: *
  844: *                 ==== Multiply by U21 ====
  845: *
  846:                   CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  847:      $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
  848: *
  849: *                 ==== Multiply by U22 ====
  850: *
  851:                   CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  852:      $                        H( JROW, INCOL+1+J2 ), LDH,
  853:      $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
  854:      $                        LDWV )
  855: *
  856: *                 ==== Copy it back ====
  857: *
  858:                   CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  859:      $                         H( JROW, INCOL+1 ), LDH )
  860:   200          CONTINUE
  861: *
  862: *              ==== Multiply Z (also vertical) ====
  863: *
  864:                IF( WANTZ ) THEN
  865:                   DO 210 JROW = ILOZ, IHIZ, NV
  866:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  867: *
  868: *                    ==== Copy right of Z to left of scratch (first
  869: *                    .     KZS columns get multiplied by zero) ====
  870: *
  871:                      CALL DLACPY( 'ALL', JLEN, KNZ,
  872:      $                            Z( JROW, INCOL+1+J2 ), LDZ,
  873:      $                            WV( 1, 1+KZS ), LDWV )
  874: *
  875: *                    ==== Multiply by U12 ====
  876: *
  877:                      CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
  878:      $                            LDWV )
  879:                      CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  880:      $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  881:      $                           LDWV )
  882: *
  883: *                    ==== Multiply by U11 ====
  884: *
  885:                      CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  886:      $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
  887:      $                           WV, LDWV )
  888: *
  889: *                    ==== Copy left of Z to right of scratch ====
  890: *
  891:                      CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
  892:      $                            LDZ, WV( 1, 1+I2 ), LDWV )
  893: *
  894: *                    ==== Multiply by U21 ====
  895: *
  896:                      CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  897:      $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
  898:      $                           LDWV )
  899: *
  900: *                    ==== Multiply by U22 ====
  901: *
  902:                      CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  903:      $                           Z( JROW, INCOL+1+J2 ), LDZ,
  904:      $                           U( J2+1, I2+1 ), LDU, ONE,
  905:      $                           WV( 1, 1+I2 ), LDWV )
  906: *
  907: *                    ==== Copy the result back to Z ====
  908: *
  909:                      CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  910:      $                            Z( JROW, INCOL+1 ), LDZ )
  911:   210             CONTINUE
  912:                END IF
  913:             END IF
  914:          END IF
  915:   220 CONTINUE
  916: *
  917: *     ==== End of DLAQR5 ====
  918: *
  919:       END

CVSweb interface <joel.bertrand@systella.fr>