File:  [local] / rpl / lapack / lapack / dlaqr5.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:24 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAQR5 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
   22: *                          SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
   23: *                          LDU, NV, WV, LDWV, NH, WH, LDWH )
   24:    25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
   27: *      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
   32: *      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *>    DLAQR5, called by DLAQR0, performs a
   43: *>    single small-bulge multi-shift QR sweep.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] WANTT
   50: *> \verbatim
   51: *>          WANTT is logical scalar
   52: *>             WANTT = .true. if the quasi-triangular Schur factor
   53: *>             is being computed.  WANTT is set to .false. otherwise.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] WANTZ
   57: *> \verbatim
   58: *>          WANTZ is logical scalar
   59: *>             WANTZ = .true. if the orthogonal Schur factor is being
   60: *>             computed.  WANTZ is set to .false. otherwise.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] KACC22
   64: *> \verbatim
   65: *>          KACC22 is integer with value 0, 1, or 2.
   66: *>             Specifies the computation mode of far-from-diagonal
   67: *>             orthogonal updates.
   68: *>        = 0: DLAQR5 does not accumulate reflections and does not
   69: *>             use matrix-matrix multiply to update far-from-diagonal
   70: *>             matrix entries.
   71: *>        = 1: DLAQR5 accumulates reflections and uses matrix-matrix
   72: *>             multiply to update the far-from-diagonal matrix entries.
   73: *>        = 2: DLAQR5 accumulates reflections, uses matrix-matrix
   74: *>             multiply to update the far-from-diagonal matrix entries,
   75: *>             and takes advantage of 2-by-2 block structure during
   76: *>             matrix multiplies.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is integer scalar
   82: *>             N is the order of the Hessenberg matrix H upon which this
   83: *>             subroutine operates.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] KTOP
   87: *> \verbatim
   88: *>          KTOP is integer scalar
   89: *> \endverbatim
   90: *>
   91: *> \param[in] KBOT
   92: *> \verbatim
   93: *>          KBOT is integer scalar
   94: *>             These are the first and last rows and columns of an
   95: *>             isolated diagonal block upon which the QR sweep is to be
   96: *>             applied. It is assumed without a check that
   97: *>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
   98: *>             and
   99: *>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] NSHFTS
  103: *> \verbatim
  104: *>          NSHFTS is integer scalar
  105: *>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
  106: *>             must be positive and even.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] SR
  110: *> \verbatim
  111: *>          SR is DOUBLE PRECISION array of size (NSHFTS)
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] SI
  115: *> \verbatim
  116: *>          SI is DOUBLE PRECISION array of size (NSHFTS)
  117: *>             SR contains the real parts and SI contains the imaginary
  118: *>             parts of the NSHFTS shifts of origin that define the
  119: *>             multi-shift QR sweep.  On output SR and SI may be
  120: *>             reordered.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] H
  124: *> \verbatim
  125: *>          H is DOUBLE PRECISION array of size (LDH,N)
  126: *>             On input H contains a Hessenberg matrix.  On output a
  127: *>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
  128: *>             to the isolated diagonal block in rows and columns KTOP
  129: *>             through KBOT.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDH
  133: *> \verbatim
  134: *>          LDH is integer scalar
  135: *>             LDH is the leading dimension of H just as declared in the
  136: *>             calling procedure.  LDH.GE.MAX(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[in] ILOZ
  140: *> \verbatim
  141: *>          ILOZ is INTEGER
  142: *> \endverbatim
  143: *>
  144: *> \param[in] IHIZ
  145: *> \verbatim
  146: *>          IHIZ is INTEGER
  147: *>             Specify the rows of Z to which transformations must be
  148: *>             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
  149: *> \endverbatim
  150: *>
  151: *> \param[in,out] Z
  152: *> \verbatim
  153: *>          Z is DOUBLE PRECISION array of size (LDZ,IHI)
  154: *>             If WANTZ = .TRUE., then the QR Sweep orthogonal
  155: *>             similarity transformation is accumulated into
  156: *>             Z(ILOZ:IHIZ,ILO:IHI) from the right.
  157: *>             If WANTZ = .FALSE., then Z is unreferenced.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDZ
  161: *> \verbatim
  162: *>          LDZ is integer scalar
  163: *>             LDA is the leading dimension of Z just as declared in
  164: *>             the calling procedure. LDZ.GE.N.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] V
  168: *> \verbatim
  169: *>          V is DOUBLE PRECISION array of size (LDV,NSHFTS/2)
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDV
  173: *> \verbatim
  174: *>          LDV is integer scalar
  175: *>             LDV is the leading dimension of V as declared in the
  176: *>             calling procedure.  LDV.GE.3.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] U
  180: *> \verbatim
  181: *>          U is DOUBLE PRECISION array of size
  182: *>             (LDU,3*NSHFTS-3)
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDU
  186: *> \verbatim
  187: *>          LDU is integer scalar
  188: *>             LDU is the leading dimension of U just as declared in the
  189: *>             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] NH
  193: *> \verbatim
  194: *>          NH is integer scalar
  195: *>             NH is the number of columns in array WH available for
  196: *>             workspace. NH.GE.1.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] WH
  200: *> \verbatim
  201: *>          WH is DOUBLE PRECISION array of size (LDWH,NH)
  202: *> \endverbatim
  203: *>
  204: *> \param[in] LDWH
  205: *> \verbatim
  206: *>          LDWH is integer scalar
  207: *>             Leading dimension of WH just as declared in the
  208: *>             calling procedure.  LDWH.GE.3*NSHFTS-3.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] NV
  212: *> \verbatim
  213: *>          NV is integer scalar
  214: *>             NV is the number of rows in WV agailable for workspace.
  215: *>             NV.GE.1.
  216: *> \endverbatim
  217: *>
  218: *> \param[out] WV
  219: *> \verbatim
  220: *>          WV is DOUBLE PRECISION array of size
  221: *>             (LDWV,3*NSHFTS-3)
  222: *> \endverbatim
  223: *>
  224: *> \param[in] LDWV
  225: *> \verbatim
  226: *>          LDWV is integer scalar
  227: *>             LDWV is the leading dimension of WV as declared in the
  228: *>             in the calling subroutine.  LDWV.GE.NV.
  229: *> \endverbatim
  230: *
  231: *  Authors:
  232: *  ========
  233: *
  234: *> \author Univ. of Tennessee 
  235: *> \author Univ. of California Berkeley 
  236: *> \author Univ. of Colorado Denver 
  237: *> \author NAG Ltd. 
  238: *
  239: *> \date September 2012
  240: *
  241: *> \ingroup doubleOTHERauxiliary
  242: *
  243: *> \par Contributors:
  244: *  ==================
  245: *>
  246: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  247: *>       University of Kansas, USA
  248: *
  249: *> \par References:
  250: *  ================
  251: *>
  252: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  253: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  254: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  255: *>       929--947, 2002.
  256: *>
  257: *  =====================================================================
  258:       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
  259:      $                   SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
  260:      $                   LDU, NV, WV, LDWV, NH, WH, LDWH )
  261: *
  262: *  -- LAPACK auxiliary routine (version 3.4.2) --
  263: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  264: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  265: *     September 2012
  266: *
  267: *     .. Scalar Arguments ..
  268:       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
  269:      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
  270:       LOGICAL            WANTT, WANTZ
  271: *     ..
  272: *     .. Array Arguments ..
  273:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
  274:      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
  275:      $                   Z( LDZ, * )
  276: *     ..
  277: *
  278: *  ================================================================
  279: *     .. Parameters ..
  280:       DOUBLE PRECISION   ZERO, ONE
  281:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  282: *     ..
  283: *     .. Local Scalars ..
  284:       DOUBLE PRECISION   ALPHA, BETA, H11, H12, H21, H22, REFSUM,
  285:      $                   SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
  286:      $                   ULP
  287:       INTEGER            I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
  288:      $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
  289:      $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
  290:      $                   NS, NU
  291:       LOGICAL            ACCUM, BLK22, BMP22
  292: *     ..
  293: *     .. External Functions ..
  294:       DOUBLE PRECISION   DLAMCH
  295:       EXTERNAL           DLAMCH
  296: *     ..
  297: *     .. Intrinsic Functions ..
  298: *
  299:       INTRINSIC          ABS, DBLE, MAX, MIN, MOD
  300: *     ..
  301: *     .. Local Arrays ..
  302:       DOUBLE PRECISION   VT( 3 )
  303: *     ..
  304: *     .. External Subroutines ..
  305:       EXTERNAL           DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
  306:      $                   DTRMM
  307: *     ..
  308: *     .. Executable Statements ..
  309: *
  310: *     ==== If there are no shifts, then there is nothing to do. ====
  311: *
  312:       IF( NSHFTS.LT.2 )
  313:      $   RETURN
  314: *
  315: *     ==== If the active block is empty or 1-by-1, then there
  316: *     .    is nothing to do. ====
  317: *
  318:       IF( KTOP.GE.KBOT )
  319:      $   RETURN
  320: *
  321: *     ==== Shuffle shifts into pairs of real shifts and pairs
  322: *     .    of complex conjugate shifts assuming complex
  323: *     .    conjugate shifts are already adjacent to one
  324: *     .    another. ====
  325: *
  326:       DO 10 I = 1, NSHFTS - 2, 2
  327:          IF( SI( I ).NE.-SI( I+1 ) ) THEN
  328: *
  329:             SWAP = SR( I )
  330:             SR( I ) = SR( I+1 )
  331:             SR( I+1 ) = SR( I+2 )
  332:             SR( I+2 ) = SWAP
  333: *
  334:             SWAP = SI( I )
  335:             SI( I ) = SI( I+1 )
  336:             SI( I+1 ) = SI( I+2 )
  337:             SI( I+2 ) = SWAP
  338:          END IF
  339:    10 CONTINUE
  340: *
  341: *     ==== NSHFTS is supposed to be even, but if it is odd,
  342: *     .    then simply reduce it by one.  The shuffle above
  343: *     .    ensures that the dropped shift is real and that
  344: *     .    the remaining shifts are paired. ====
  345: *
  346:       NS = NSHFTS - MOD( NSHFTS, 2 )
  347: *
  348: *     ==== Machine constants for deflation ====
  349: *
  350:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  351:       SAFMAX = ONE / SAFMIN
  352:       CALL DLABAD( SAFMIN, SAFMAX )
  353:       ULP = DLAMCH( 'PRECISION' )
  354:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  355: *
  356: *     ==== Use accumulated reflections to update far-from-diagonal
  357: *     .    entries ? ====
  358: *
  359:       ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
  360: *
  361: *     ==== If so, exploit the 2-by-2 block structure? ====
  362: *
  363:       BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
  364: *
  365: *     ==== clear trash ====
  366: *
  367:       IF( KTOP+2.LE.KBOT )
  368:      $   H( KTOP+2, KTOP ) = ZERO
  369: *
  370: *     ==== NBMPS = number of 2-shift bulges in the chain ====
  371: *
  372:       NBMPS = NS / 2
  373: *
  374: *     ==== KDU = width of slab ====
  375: *
  376:       KDU = 6*NBMPS - 3
  377: *
  378: *     ==== Create and chase chains of NBMPS bulges ====
  379: *
  380:       DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
  381:          NDCOL = INCOL + KDU
  382:          IF( ACCUM )
  383:      $      CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
  384: *
  385: *        ==== Near-the-diagonal bulge chase.  The following loop
  386: *        .    performs the near-the-diagonal part of a small bulge
  387: *        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
  388: *        .    chunk extends from column INCOL to column NDCOL
  389: *        .    (including both column INCOL and column NDCOL). The
  390: *        .    following loop chases a 3*NBMPS column long chain of
  391: *        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
  392: *        .    may be less than KTOP and and NDCOL may be greater than
  393: *        .    KBOT indicating phantom columns from which to chase
  394: *        .    bulges before they are actually introduced or to which
  395: *        .    to chase bulges beyond column KBOT.)  ====
  396: *
  397:          DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
  398: *
  399: *           ==== Bulges number MTOP to MBOT are active double implicit
  400: *           .    shift bulges.  There may or may not also be small
  401: *           .    2-by-2 bulge, if there is room.  The inactive bulges
  402: *           .    (if any) must wait until the active bulges have moved
  403: *           .    down the diagonal to make room.  The phantom matrix
  404: *           .    paradigm described above helps keep track.  ====
  405: *
  406:             MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
  407:             MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
  408:             M22 = MBOT + 1
  409:             BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
  410:      $              ( KBOT-2 )
  411: *
  412: *           ==== Generate reflections to chase the chain right
  413: *           .    one column.  (The minimum value of K is KTOP-1.) ====
  414: *
  415:             DO 20 M = MTOP, MBOT
  416:                K = KRCOL + 3*( M-1 )
  417:                IF( K.EQ.KTOP-1 ) THEN
  418:                   CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
  419:      $                         SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
  420:      $                         V( 1, M ) )
  421:                   ALPHA = V( 1, M )
  422:                   CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
  423:                ELSE
  424:                   BETA = H( K+1, K )
  425:                   V( 2, M ) = H( K+2, K )
  426:                   V( 3, M ) = H( K+3, K )
  427:                   CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
  428: *
  429: *                 ==== A Bulge may collapse because of vigilant
  430: *                 .    deflation or destructive underflow.  In the
  431: *                 .    underflow case, try the two-small-subdiagonals
  432: *                 .    trick to try to reinflate the bulge.  ====
  433: *
  434:                   IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
  435:      $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
  436: *
  437: *                    ==== Typical case: not collapsed (yet). ====
  438: *
  439:                      H( K+1, K ) = BETA
  440:                      H( K+2, K ) = ZERO
  441:                      H( K+3, K ) = ZERO
  442:                   ELSE
  443: *
  444: *                    ==== Atypical case: collapsed.  Attempt to
  445: *                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
  446: *                    .    If the fill resulting from the new
  447: *                    .    reflector is too large, then abandon it.
  448: *                    .    Otherwise, use the new one. ====
  449: *
  450:                      CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
  451:      $                            SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
  452:      $                            VT )
  453:                      ALPHA = VT( 1 )
  454:                      CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
  455:                      REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
  456:      $                        H( K+2, K ) )
  457: *
  458:                      IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
  459:      $                   ABS( REFSUM*VT( 3 ) ).GT.ULP*
  460:      $                   ( ABS( H( K, K ) )+ABS( H( K+1,
  461:      $                   K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
  462: *
  463: *                       ==== Starting a new bulge here would
  464: *                       .    create non-negligible fill.  Use
  465: *                       .    the old one with trepidation. ====
  466: *
  467:                         H( K+1, K ) = BETA
  468:                         H( K+2, K ) = ZERO
  469:                         H( K+3, K ) = ZERO
  470:                      ELSE
  471: *
  472: *                       ==== Stating a new bulge here would
  473: *                       .    create only negligible fill.
  474: *                       .    Replace the old reflector with
  475: *                       .    the new one. ====
  476: *
  477:                         H( K+1, K ) = H( K+1, K ) - REFSUM
  478:                         H( K+2, K ) = ZERO
  479:                         H( K+3, K ) = ZERO
  480:                         V( 1, M ) = VT( 1 )
  481:                         V( 2, M ) = VT( 2 )
  482:                         V( 3, M ) = VT( 3 )
  483:                      END IF
  484:                   END IF
  485:                END IF
  486:    20       CONTINUE
  487: *
  488: *           ==== Generate a 2-by-2 reflection, if needed. ====
  489: *
  490:             K = KRCOL + 3*( M22-1 )
  491:             IF( BMP22 ) THEN
  492:                IF( K.EQ.KTOP-1 ) THEN
  493:                   CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
  494:      $                         SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
  495:      $                         V( 1, M22 ) )
  496:                   BETA = V( 1, M22 )
  497:                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  498:                ELSE
  499:                   BETA = H( K+1, K )
  500:                   V( 2, M22 ) = H( K+2, K )
  501:                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  502:                   H( K+1, K ) = BETA
  503:                   H( K+2, K ) = ZERO
  504:                END IF
  505:             END IF
  506: *
  507: *           ==== Multiply H by reflections from the left ====
  508: *
  509:             IF( ACCUM ) THEN
  510:                JBOT = MIN( NDCOL, KBOT )
  511:             ELSE IF( WANTT ) THEN
  512:                JBOT = N
  513:             ELSE
  514:                JBOT = KBOT
  515:             END IF
  516:             DO 40 J = MAX( KTOP, KRCOL ), JBOT
  517:                MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
  518:                DO 30 M = MTOP, MEND
  519:                   K = KRCOL + 3*( M-1 )
  520:                   REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
  521:      $                     H( K+2, J )+V( 3, M )*H( K+3, J ) )
  522:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  523:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
  524:                   H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
  525:    30          CONTINUE
  526:    40       CONTINUE
  527:             IF( BMP22 ) THEN
  528:                K = KRCOL + 3*( M22-1 )
  529:                DO 50 J = MAX( K+1, KTOP ), JBOT
  530:                   REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
  531:      $                     H( K+2, J ) )
  532:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  533:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
  534:    50          CONTINUE
  535:             END IF
  536: *
  537: *           ==== Multiply H by reflections from the right.
  538: *           .    Delay filling in the last row until the
  539: *           .    vigilant deflation check is complete. ====
  540: *
  541:             IF( ACCUM ) THEN
  542:                JTOP = MAX( KTOP, INCOL )
  543:             ELSE IF( WANTT ) THEN
  544:                JTOP = 1
  545:             ELSE
  546:                JTOP = KTOP
  547:             END IF
  548:             DO 90 M = MTOP, MBOT
  549:                IF( V( 1, M ).NE.ZERO ) THEN
  550:                   K = KRCOL + 3*( M-1 )
  551:                   DO 60 J = JTOP, MIN( KBOT, K+3 )
  552:                      REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
  553:      $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
  554:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  555:                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
  556:                      H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
  557:    60             CONTINUE
  558: *
  559:                   IF( ACCUM ) THEN
  560: *
  561: *                    ==== Accumulate U. (If necessary, update Z later
  562: *                    .    with with an efficient matrix-matrix
  563: *                    .    multiply.) ====
  564: *
  565:                      KMS = K - INCOL
  566:                      DO 70 J = MAX( 1, KTOP-INCOL ), KDU
  567:                         REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
  568:      $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
  569:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  570:                         U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
  571:                         U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
  572:    70                CONTINUE
  573:                   ELSE IF( WANTZ ) THEN
  574: *
  575: *                    ==== U is not accumulated, so update Z
  576: *                    .    now by multiplying by reflections
  577: *                    .    from the right. ====
  578: *
  579:                      DO 80 J = ILOZ, IHIZ
  580:                         REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
  581:      $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
  582:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  583:                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
  584:                         Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
  585:    80                CONTINUE
  586:                   END IF
  587:                END IF
  588:    90       CONTINUE
  589: *
  590: *           ==== Special case: 2-by-2 reflection (if needed) ====
  591: *
  592:             K = KRCOL + 3*( M22-1 )
  593:             IF( BMP22 ) THEN
  594:                IF ( V( 1, M22 ).NE.ZERO ) THEN
  595:                   DO 100 J = JTOP, MIN( KBOT, K+3 )
  596:                      REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
  597:      $                        H( J, K+2 ) )
  598:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  599:                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
  600:   100             CONTINUE
  601: *
  602:                   IF( ACCUM ) THEN
  603:                      KMS = K - INCOL
  604:                      DO 110 J = MAX( 1, KTOP-INCOL ), KDU
  605:                         REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
  606:      $                           V( 2, M22 )*U( J, KMS+2 ) )
  607:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  608:                         U( J, KMS+2 ) = U( J, KMS+2 ) -
  609:      $                                  REFSUM*V( 2, M22 )
  610:   110             CONTINUE
  611:                   ELSE IF( WANTZ ) THEN
  612:                      DO 120 J = ILOZ, IHIZ
  613:                         REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
  614:      $                           Z( J, K+2 ) )
  615:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  616:                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
  617:   120                CONTINUE
  618:                   END IF
  619:                END IF
  620:             END IF
  621: *
  622: *           ==== Vigilant deflation check ====
  623: *
  624:             MSTART = MTOP
  625:             IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
  626:      $         MSTART = MSTART + 1
  627:             MEND = MBOT
  628:             IF( BMP22 )
  629:      $         MEND = MEND + 1
  630:             IF( KRCOL.EQ.KBOT-2 )
  631:      $         MEND = MEND + 1
  632:             DO 130 M = MSTART, MEND
  633:                K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
  634: *
  635: *              ==== The following convergence test requires that
  636: *              .    the tradition small-compared-to-nearby-diagonals
  637: *              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
  638: *              .    criteria both be satisfied.  The latter improves
  639: *              .    accuracy in some examples. Falling back on an
  640: *              .    alternate convergence criterion when TST1 or TST2
  641: *              .    is zero (as done here) is traditional but probably
  642: *              .    unnecessary. ====
  643: *
  644:                IF( H( K+1, K ).NE.ZERO ) THEN
  645:                   TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
  646:                   IF( TST1.EQ.ZERO ) THEN
  647:                      IF( K.GE.KTOP+1 )
  648:      $                  TST1 = TST1 + ABS( H( K, K-1 ) )
  649:                      IF( K.GE.KTOP+2 )
  650:      $                  TST1 = TST1 + ABS( H( K, K-2 ) )
  651:                      IF( K.GE.KTOP+3 )
  652:      $                  TST1 = TST1 + ABS( H( K, K-3 ) )
  653:                      IF( K.LE.KBOT-2 )
  654:      $                  TST1 = TST1 + ABS( H( K+2, K+1 ) )
  655:                      IF( K.LE.KBOT-3 )
  656:      $                  TST1 = TST1 + ABS( H( K+3, K+1 ) )
  657:                      IF( K.LE.KBOT-4 )
  658:      $                  TST1 = TST1 + ABS( H( K+4, K+1 ) )
  659:                   END IF
  660:                   IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
  661:      $                 THEN
  662:                      H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
  663:                      H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
  664:                      H11 = MAX( ABS( H( K+1, K+1 ) ),
  665:      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
  666:                      H22 = MIN( ABS( H( K+1, K+1 ) ),
  667:      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
  668:                      SCL = H11 + H12
  669:                      TST2 = H22*( H11 / SCL )
  670: *
  671:                      IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
  672:      $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
  673:                   END IF
  674:                END IF
  675:   130       CONTINUE
  676: *
  677: *           ==== Fill in the last row of each bulge. ====
  678: *
  679:             MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
  680:             DO 140 M = MTOP, MEND
  681:                K = KRCOL + 3*( M-1 )
  682:                REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
  683:                H( K+4, K+1 ) = -REFSUM
  684:                H( K+4, K+2 ) = -REFSUM*V( 2, M )
  685:                H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
  686:   140       CONTINUE
  687: *
  688: *           ==== End of near-the-diagonal bulge chase. ====
  689: *
  690:   150    CONTINUE
  691: *
  692: *        ==== Use U (if accumulated) to update far-from-diagonal
  693: *        .    entries in H.  If required, use U to update Z as
  694: *        .    well. ====
  695: *
  696:          IF( ACCUM ) THEN
  697:             IF( WANTT ) THEN
  698:                JTOP = 1
  699:                JBOT = N
  700:             ELSE
  701:                JTOP = KTOP
  702:                JBOT = KBOT
  703:             END IF
  704:             IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
  705:      $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
  706: *
  707: *              ==== Updates not exploiting the 2-by-2 block
  708: *              .    structure of U.  K1 and NU keep track of
  709: *              .    the location and size of U in the special
  710: *              .    cases of introducing bulges and chasing
  711: *              .    bulges off the bottom.  In these special
  712: *              .    cases and in case the number of shifts
  713: *              .    is NS = 2, there is no 2-by-2 block
  714: *              .    structure to exploit.  ====
  715: *
  716:                K1 = MAX( 1, KTOP-INCOL )
  717:                NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
  718: *
  719: *              ==== Horizontal Multiply ====
  720: *
  721:                DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  722:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  723:                   CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
  724:      $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
  725:      $                        LDWH )
  726:                   CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
  727:      $                         H( INCOL+K1, JCOL ), LDH )
  728:   160          CONTINUE
  729: *
  730: *              ==== Vertical multiply ====
  731: *
  732:                DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
  733:                   JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
  734:                   CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  735:      $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
  736:      $                        LDU, ZERO, WV, LDWV )
  737:                   CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
  738:      $                         H( JROW, INCOL+K1 ), LDH )
  739:   170          CONTINUE
  740: *
  741: *              ==== Z multiply (also vertical) ====
  742: *
  743:                IF( WANTZ ) THEN
  744:                   DO 180 JROW = ILOZ, IHIZ, NV
  745:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  746:                      CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  747:      $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
  748:      $                           LDU, ZERO, WV, LDWV )
  749:                      CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
  750:      $                            Z( JROW, INCOL+K1 ), LDZ )
  751:   180             CONTINUE
  752:                END IF
  753:             ELSE
  754: *
  755: *              ==== Updates exploiting U's 2-by-2 block structure.
  756: *              .    (I2, I4, J2, J4 are the last rows and columns
  757: *              .    of the blocks.) ====
  758: *
  759:                I2 = ( KDU+1 ) / 2
  760:                I4 = KDU
  761:                J2 = I4 - I2
  762:                J4 = KDU
  763: *
  764: *              ==== KZS and KNZ deal with the band of zeros
  765: *              .    along the diagonal of one of the triangular
  766: *              .    blocks. ====
  767: *
  768:                KZS = ( J4-J2 ) - ( NS+1 )
  769:                KNZ = NS + 1
  770: *
  771: *              ==== Horizontal multiply ====
  772: *
  773:                DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  774:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  775: *
  776: *                 ==== Copy bottom of H to top+KZS of scratch ====
  777: *                  (The first KZS rows get multiplied by zero.) ====
  778: *
  779:                   CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
  780:      $                         LDH, WH( KZS+1, 1 ), LDWH )
  781: *
  782: *                 ==== Multiply by U21**T ====
  783: *
  784:                   CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
  785:                   CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
  786:      $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
  787:      $                        LDWH )
  788: *
  789: *                 ==== Multiply top of H by U11**T ====
  790: *
  791:                   CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
  792:      $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
  793: *
  794: *                 ==== Copy top of H to bottom of WH ====
  795: *
  796:                   CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
  797:      $                         WH( I2+1, 1 ), LDWH )
  798: *
  799: *                 ==== Multiply by U21**T ====
  800: *
  801:                   CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
  802:      $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
  803: *
  804: *                 ==== Multiply by U22 ====
  805: *
  806:                   CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
  807:      $                        U( J2+1, I2+1 ), LDU,
  808:      $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
  809:      $                        WH( I2+1, 1 ), LDWH )
  810: *
  811: *                 ==== Copy it back ====
  812: *
  813:                   CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
  814:      $                         H( INCOL+1, JCOL ), LDH )
  815:   190          CONTINUE
  816: *
  817: *              ==== Vertical multiply ====
  818: *
  819:                DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
  820:                   JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
  821: *
  822: *                 ==== Copy right of H to scratch (the first KZS
  823: *                 .    columns get multiplied by zero) ====
  824: *
  825:                   CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
  826:      $                         LDH, WV( 1, 1+KZS ), LDWV )
  827: *
  828: *                 ==== Multiply by U21 ====
  829: *
  830:                   CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
  831:                   CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  832:      $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  833:      $                        LDWV )
  834: *
  835: *                 ==== Multiply by U11 ====
  836: *
  837:                   CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  838:      $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
  839:      $                        LDWV )
  840: *
  841: *                 ==== Copy left of H to right of scratch ====
  842: *
  843:                   CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
  844:      $                         WV( 1, 1+I2 ), LDWV )
  845: *
  846: *                 ==== Multiply by U21 ====
  847: *
  848:                   CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  849:      $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
  850: *
  851: *                 ==== Multiply by U22 ====
  852: *
  853:                   CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  854:      $                        H( JROW, INCOL+1+J2 ), LDH,
  855:      $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
  856:      $                        LDWV )
  857: *
  858: *                 ==== Copy it back ====
  859: *
  860:                   CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  861:      $                         H( JROW, INCOL+1 ), LDH )
  862:   200          CONTINUE
  863: *
  864: *              ==== Multiply Z (also vertical) ====
  865: *
  866:                IF( WANTZ ) THEN
  867:                   DO 210 JROW = ILOZ, IHIZ, NV
  868:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  869: *
  870: *                    ==== Copy right of Z to left of scratch (first
  871: *                    .     KZS columns get multiplied by zero) ====
  872: *
  873:                      CALL DLACPY( 'ALL', JLEN, KNZ,
  874:      $                            Z( JROW, INCOL+1+J2 ), LDZ,
  875:      $                            WV( 1, 1+KZS ), LDWV )
  876: *
  877: *                    ==== Multiply by U12 ====
  878: *
  879:                      CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
  880:      $                            LDWV )
  881:                      CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  882:      $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  883:      $                           LDWV )
  884: *
  885: *                    ==== Multiply by U11 ====
  886: *
  887:                      CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  888:      $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
  889:      $                           WV, LDWV )
  890: *
  891: *                    ==== Copy left of Z to right of scratch ====
  892: *
  893:                      CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
  894:      $                            LDZ, WV( 1, 1+I2 ), LDWV )
  895: *
  896: *                    ==== Multiply by U21 ====
  897: *
  898:                      CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  899:      $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
  900:      $                           LDWV )
  901: *
  902: *                    ==== Multiply by U22 ====
  903: *
  904:                      CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  905:      $                           Z( JROW, INCOL+1+J2 ), LDZ,
  906:      $                           U( J2+1, I2+1 ), LDU, ONE,
  907:      $                           WV( 1, 1+I2 ), LDWV )
  908: *
  909: *                    ==== Copy the result back to Z ====
  910: *
  911:                      CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  912:      $                            Z( JROW, INCOL+1 ), LDZ )
  913:   210             CONTINUE
  914:                END IF
  915:             END IF
  916:          END IF
  917:   220 CONTINUE
  918: *
  919: *     ==== End of DLAQR5 ====
  920: *
  921:       END

CVSweb interface <joel.bertrand@systella.fr>