--- rpl/lapack/lapack/dlaqr5.f 2010/12/21 13:53:31 1.8 +++ rpl/lapack/lapack/dlaqr5.f 2023/08/07 08:38:56 1.23 @@ -1,11 +1,272 @@ +*> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAQR5 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, +* SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, +* LDU, NV, WV, LDWV, NH, WH, LDWH ) +* +* .. Scalar Arguments .. +* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, +* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV +* LOGICAL WANTT, WANTZ +* .. +* .. Array Arguments .. +* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), +* $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), +* $ Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAQR5, called by DLAQR0, performs a +*> single small-bulge multi-shift QR sweep. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] WANTT +*> \verbatim +*> WANTT is LOGICAL +*> WANTT = .true. if the quasi-triangular Schur factor +*> is being computed. WANTT is set to .false. otherwise. +*> \endverbatim +*> +*> \param[in] WANTZ +*> \verbatim +*> WANTZ is LOGICAL +*> WANTZ = .true. if the orthogonal Schur factor is being +*> computed. WANTZ is set to .false. otherwise. +*> \endverbatim +*> +*> \param[in] KACC22 +*> \verbatim +*> KACC22 is INTEGER with value 0, 1, or 2. +*> Specifies the computation mode of far-from-diagonal +*> orthogonal updates. +*> = 0: DLAQR5 does not accumulate reflections and does not +*> use matrix-matrix multiply to update far-from-diagonal +*> matrix entries. +*> = 1: DLAQR5 accumulates reflections and uses matrix-matrix +*> multiply to update the far-from-diagonal matrix entries. +*> = 2: Same as KACC22 = 1. This option used to enable exploiting +*> the 2-by-2 structure during matrix multiplications, but +*> this is no longer supported. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> N is the order of the Hessenberg matrix H upon which this +*> subroutine operates. +*> \endverbatim +*> +*> \param[in] KTOP +*> \verbatim +*> KTOP is INTEGER +*> \endverbatim +*> +*> \param[in] KBOT +*> \verbatim +*> KBOT is INTEGER +*> These are the first and last rows and columns of an +*> isolated diagonal block upon which the QR sweep is to be +*> applied. It is assumed without a check that +*> either KTOP = 1 or H(KTOP,KTOP-1) = 0 +*> and +*> either KBOT = N or H(KBOT+1,KBOT) = 0. +*> \endverbatim +*> +*> \param[in] NSHFTS +*> \verbatim +*> NSHFTS is INTEGER +*> NSHFTS gives the number of simultaneous shifts. NSHFTS +*> must be positive and even. +*> \endverbatim +*> +*> \param[in,out] SR +*> \verbatim +*> SR is DOUBLE PRECISION array, dimension (NSHFTS) +*> \endverbatim +*> +*> \param[in,out] SI +*> \verbatim +*> SI is DOUBLE PRECISION array, dimension (NSHFTS) +*> SR contains the real parts and SI contains the imaginary +*> parts of the NSHFTS shifts of origin that define the +*> multi-shift QR sweep. On output SR and SI may be +*> reordered. +*> \endverbatim +*> +*> \param[in,out] H +*> \verbatim +*> H is DOUBLE PRECISION array, dimension (LDH,N) +*> On input H contains a Hessenberg matrix. On output a +*> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied +*> to the isolated diagonal block in rows and columns KTOP +*> through KBOT. +*> \endverbatim +*> +*> \param[in] LDH +*> \verbatim +*> LDH is INTEGER +*> LDH is the leading dimension of H just as declared in the +*> calling procedure. LDH >= MAX(1,N). +*> \endverbatim +*> +*> \param[in] ILOZ +*> \verbatim +*> ILOZ is INTEGER +*> \endverbatim +*> +*> \param[in] IHIZ +*> \verbatim +*> IHIZ is INTEGER +*> Specify the rows of Z to which transformations must be +*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ,IHIZ) +*> If WANTZ = .TRUE., then the QR Sweep orthogonal +*> similarity transformation is accumulated into +*> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. +*> If WANTZ = .FALSE., then Z is unreferenced. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> LDA is the leading dimension of Z just as declared in +*> the calling procedure. LDZ >= N. +*> \endverbatim +*> +*> \param[out] V +*> \verbatim +*> V is DOUBLE PRECISION array, dimension (LDV,NSHFTS/2) +*> \endverbatim +*> +*> \param[in] LDV +*> \verbatim +*> LDV is INTEGER +*> LDV is the leading dimension of V as declared in the +*> calling procedure. LDV >= 3. +*> \endverbatim +*> +*> \param[out] U +*> \verbatim +*> U is DOUBLE PRECISION array, dimension (LDU,2*NSHFTS) +*> \endverbatim +*> +*> \param[in] LDU +*> \verbatim +*> LDU is INTEGER +*> LDU is the leading dimension of U just as declared in the +*> in the calling subroutine. LDU >= 2*NSHFTS. +*> \endverbatim +*> +*> \param[in] NV +*> \verbatim +*> NV is INTEGER +*> NV is the number of rows in WV agailable for workspace. +*> NV >= 1. +*> \endverbatim +*> +*> \param[out] WV +*> \verbatim +*> WV is DOUBLE PRECISION array, dimension (LDWV,2*NSHFTS) +*> \endverbatim +*> +*> \param[in] LDWV +*> \verbatim +*> LDWV is INTEGER +*> LDWV is the leading dimension of WV as declared in the +*> in the calling subroutine. LDWV >= NV. +*> \endverbatim +* +*> \param[in] NH +*> \verbatim +*> NH is INTEGER +*> NH is the number of columns in array WH available for +*> workspace. NH >= 1. +*> \endverbatim +*> +*> \param[out] WH +*> \verbatim +*> WH is DOUBLE PRECISION array, dimension (LDWH,NH) +*> \endverbatim +*> +*> \param[in] LDWH +*> \verbatim +*> LDWH is INTEGER +*> Leading dimension of WH just as declared in the +*> calling procedure. LDWH >= 2*NSHFTS. +*> \endverbatim +*> +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup doubleOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Karen Braman and Ralph Byers, Department of Mathematics, +*> University of Kansas, USA +*> +*> Lars Karlsson, Daniel Kressner, and Bruno Lang +*> +*> Thijs Steel, Department of Computer science, +*> KU Leuven, Belgium +* +*> \par References: +* ================ +*> +*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR +*> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 +*> Performance, SIAM Journal of Matrix Analysis, volume 23, pages +*> 929--947, 2002. +*> +*> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed +*> chains of bulges in multishift QR algorithms. +*> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). +*> +* ===================================================================== SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, $ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, $ LDU, NV, WV, LDWV, NH, WH, LDWH ) + IMPLICIT NONE * -* -- LAPACK auxiliary routine (version 3.3.0) -- +* -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2010 * * .. Scalar Arguments .. INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, @@ -18,140 +279,20 @@ $ Z( LDZ, * ) * .. * -* This auxiliary subroutine called by DLAQR0 performs a -* single small-bulge multi-shift QR sweep. -* -* WANTT (input) logical scalar -* WANTT = .true. if the quasi-triangular Schur factor -* is being computed. WANTT is set to .false. otherwise. -* -* WANTZ (input) logical scalar -* WANTZ = .true. if the orthogonal Schur factor is being -* computed. WANTZ is set to .false. otherwise. -* -* KACC22 (input) integer with value 0, 1, or 2. -* Specifies the computation mode of far-from-diagonal -* orthogonal updates. -* = 0: DLAQR5 does not accumulate reflections and does not -* use matrix-matrix multiply to update far-from-diagonal -* matrix entries. -* = 1: DLAQR5 accumulates reflections and uses matrix-matrix -* multiply to update the far-from-diagonal matrix entries. -* = 2: DLAQR5 accumulates reflections, uses matrix-matrix -* multiply to update the far-from-diagonal matrix entries, -* and takes advantage of 2-by-2 block structure during -* matrix multiplies. -* -* N (input) integer scalar -* N is the order of the Hessenberg matrix H upon which this -* subroutine operates. -* -* KTOP (input) integer scalar -* KBOT (input) integer scalar -* These are the first and last rows and columns of an -* isolated diagonal block upon which the QR sweep is to be -* applied. It is assumed without a check that -* either KTOP = 1 or H(KTOP,KTOP-1) = 0 -* and -* either KBOT = N or H(KBOT+1,KBOT) = 0. -* -* NSHFTS (input) integer scalar -* NSHFTS gives the number of simultaneous shifts. NSHFTS -* must be positive and even. -* -* SR (input/output) DOUBLE PRECISION array of size (NSHFTS) -* SI (input/output) DOUBLE PRECISION array of size (NSHFTS) -* SR contains the real parts and SI contains the imaginary -* parts of the NSHFTS shifts of origin that define the -* multi-shift QR sweep. On output SR and SI may be -* reordered. -* -* H (input/output) DOUBLE PRECISION array of size (LDH,N) -* On input H contains a Hessenberg matrix. On output a -* multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied -* to the isolated diagonal block in rows and columns KTOP -* through KBOT. -* -* LDH (input) integer scalar -* LDH is the leading dimension of H just as declared in the -* calling procedure. LDH.GE.MAX(1,N). -* -* ILOZ (input) INTEGER -* IHIZ (input) INTEGER -* Specify the rows of Z to which transformations must be -* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N -* -* Z (input/output) DOUBLE PRECISION array of size (LDZ,IHI) -* If WANTZ = .TRUE., then the QR Sweep orthogonal -* similarity transformation is accumulated into -* Z(ILOZ:IHIZ,ILO:IHI) from the right. -* If WANTZ = .FALSE., then Z is unreferenced. -* -* LDZ (input) integer scalar -* LDA is the leading dimension of Z just as declared in -* the calling procedure. LDZ.GE.N. -* -* V (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2) -* -* LDV (input) integer scalar -* LDV is the leading dimension of V as declared in the -* calling procedure. LDV.GE.3. -* -* U (workspace) DOUBLE PRECISION array of size -* (LDU,3*NSHFTS-3) -* -* LDU (input) integer scalar -* LDU is the leading dimension of U just as declared in the -* in the calling subroutine. LDU.GE.3*NSHFTS-3. -* -* NH (input) integer scalar -* NH is the number of columns in array WH available for -* workspace. NH.GE.1. -* -* WH (workspace) DOUBLE PRECISION array of size (LDWH,NH) -* -* LDWH (input) integer scalar -* Leading dimension of WH just as declared in the -* calling procedure. LDWH.GE.3*NSHFTS-3. -* -* NV (input) integer scalar -* NV is the number of rows in WV agailable for workspace. -* NV.GE.1. -* -* WV (workspace) DOUBLE PRECISION array of size -* (LDWV,3*NSHFTS-3) -* -* LDWV (input) integer scalar -* LDWV is the leading dimension of WV as declared in the -* in the calling subroutine. LDWV.GE.NV. -* -* ================================================================ -* Based on contributions by -* Karen Braman and Ralph Byers, Department of Mathematics, -* University of Kansas, USA -* -* ================================================================ -* Reference: -* -* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR -* Algorithm Part I: Maintaining Well Focused Shifts, and -* Level 3 Performance, SIAM Journal of Matrix Analysis, -* volume 23, pages 929--947, 2002. -* -* ================================================================ +* ================================================================ * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM, - $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2, - $ ULP - INTEGER I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN, - $ JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS, - $ M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL, + $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2, + $ T3, TST1, TST2, ULP + INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN, + $ JROW, JTOP, K, K1, KDU, KMS, KRCOL, + $ M, M22, MBOT, MTOP, NBMPS, NDCOL, $ NS, NU - LOGICAL ACCUM, BLK22, BMP22 + LOGICAL ACCUM, BMP22 * .. * .. External Functions .. DOUBLE PRECISION DLAMCH @@ -221,10 +362,6 @@ * ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 ) * -* ==== If so, exploit the 2-by-2 block structure? ==== -* - BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 ) -* * ==== clear trash ==== * IF( KTOP+2.LE.KBOT ) @@ -236,28 +373,39 @@ * * ==== KDU = width of slab ==== * - KDU = 6*NBMPS - 3 + KDU = 4*NBMPS * * ==== Create and chase chains of NBMPS bulges ==== * - DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2 + DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS +* +* JTOP = Index from which updates from the right start. +* + IF( ACCUM ) THEN + JTOP = MAX( KTOP, INCOL ) + ELSE IF( WANTT ) THEN + JTOP = 1 + ELSE + JTOP = KTOP + END IF +* NDCOL = INCOL + KDU IF( ACCUM ) $ CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU ) * * ==== Near-the-diagonal bulge chase. The following loop * . performs the near-the-diagonal part of a small bulge -* . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal +* . multi-shift QR sweep. Each 4*NBMPS column diagonal * . chunk extends from column INCOL to column NDCOL * . (including both column INCOL and column NDCOL). The -* . following loop chases a 3*NBMPS column long chain of -* . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL +* . following loop chases a 2*NBMPS+1 column long chain of +* . NBMPS bulges 2*NBMPS columns to the right. (INCOL * . may be less than KTOP and and NDCOL may be greater than * . KBOT indicating phantom columns from which to chase * . bulges before they are actually introduced or to which * . to chase bulges beyond column KBOT.) ==== * - DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 ) + DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 ) * * ==== Bulges number MTOP to MBOT are active double implicit * . shift bulges. There may or may not also be small @@ -266,17 +414,138 @@ * . down the diagonal to make room. The phantom matrix * . paradigm described above helps keep track. ==== * - MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 ) - MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 ) + MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 ) + MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 ) M22 = MBOT + 1 - BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ. + BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ. $ ( KBOT-2 ) * * ==== Generate reflections to chase the chain right * . one column. (The minimum value of K is KTOP-1.) ==== * - DO 20 M = MTOP, MBOT - K = KRCOL + 3*( M-1 ) + IF ( BMP22 ) THEN +* +* ==== Special case: 2-by-2 reflection at bottom treated +* . separately ==== +* + K = KRCOL + 2*( M22-1 ) + IF( K.EQ.KTOP-1 ) THEN + CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ), + $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ), + $ V( 1, M22 ) ) + BETA = V( 1, M22 ) + CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) + ELSE + BETA = H( K+1, K ) + V( 2, M22 ) = H( K+2, K ) + CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) + H( K+1, K ) = BETA + H( K+2, K ) = ZERO + END IF + +* +* ==== Perform update from right within +* . computational window. ==== +* + T1 = V( 1, M22 ) + T2 = T1*V( 2, M22 ) + DO 30 J = JTOP, MIN( KBOT, K+3 ) + REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 ) + H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1 + H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2 + 30 CONTINUE +* +* ==== Perform update from left within +* . computational window. ==== +* + IF( ACCUM ) THEN + JBOT = MIN( NDCOL, KBOT ) + ELSE IF( WANTT ) THEN + JBOT = N + ELSE + JBOT = KBOT + END IF + T1 = V( 1, M22 ) + T2 = T1*V( 2, M22 ) + DO 40 J = K+1, JBOT + REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J ) + H( K+1, J ) = H( K+1, J ) - REFSUM*T1 + H( K+2, J ) = H( K+2, J ) - REFSUM*T2 + 40 CONTINUE +* +* ==== The following convergence test requires that +* . the tradition small-compared-to-nearby-diagonals +* . criterion and the Ahues & Tisseur (LAWN 122, 1997) +* . criteria both be satisfied. The latter improves +* . accuracy in some examples. Falling back on an +* . alternate convergence criterion when TST1 or TST2 +* . is zero (as done here) is traditional but probably +* . unnecessary. ==== +* + IF( K.GE.KTOP ) THEN + IF( H( K+1, K ).NE.ZERO ) THEN + TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) ) + IF( TST1.EQ.ZERO ) THEN + IF( K.GE.KTOP+1 ) + $ TST1 = TST1 + ABS( H( K, K-1 ) ) + IF( K.GE.KTOP+2 ) + $ TST1 = TST1 + ABS( H( K, K-2 ) ) + IF( K.GE.KTOP+3 ) + $ TST1 = TST1 + ABS( H( K, K-3 ) ) + IF( K.LE.KBOT-2 ) + $ TST1 = TST1 + ABS( H( K+2, K+1 ) ) + IF( K.LE.KBOT-3 ) + $ TST1 = TST1 + ABS( H( K+3, K+1 ) ) + IF( K.LE.KBOT-4 ) + $ TST1 = TST1 + ABS( H( K+4, K+1 ) ) + END IF + IF( ABS( H( K+1, K ) ) + $ .LE.MAX( SMLNUM, ULP*TST1 ) ) THEN + H12 = MAX( ABS( H( K+1, K ) ), + $ ABS( H( K, K+1 ) ) ) + H21 = MIN( ABS( H( K+1, K ) ), + $ ABS( H( K, K+1 ) ) ) + H11 = MAX( ABS( H( K+1, K+1 ) ), + $ ABS( H( K, K )-H( K+1, K+1 ) ) ) + H22 = MIN( ABS( H( K+1, K+1 ) ), + $ ABS( H( K, K )-H( K+1, K+1 ) ) ) + SCL = H11 + H12 + TST2 = H22*( H11 / SCL ) +* + IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE. + $ MAX( SMLNUM, ULP*TST2 ) ) THEN + H( K+1, K ) = ZERO + END IF + END IF + END IF + END IF +* +* ==== Accumulate orthogonal transformations. ==== +* + IF( ACCUM ) THEN + KMS = K - INCOL + T1 = V( 1, M22 ) + T2 = T1*V( 2, M22 ) + DO 50 J = MAX( 1, KTOP-INCOL ), KDU + REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 ) + U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1 + U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2 + 50 CONTINUE + ELSE IF( WANTZ ) THEN + T1 = V( 1, M22 ) + T2 = T1*V( 2, M22 ) + DO 60 J = ILOZ, IHIZ + REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 ) + Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1 + Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2 + 60 CONTINUE + END IF + END IF +* +* ==== Normal case: Chain of 3-by-3 reflections ==== +* + DO 80 M = MBOT, MTOP, -1 + K = KRCOL + 2*( M-1 ) IF( K.EQ.KTOP-1 ) THEN CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ), $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ), @@ -284,7 +553,20 @@ ALPHA = V( 1, M ) CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) ) ELSE - BETA = H( K+1, K ) +* +* ==== Perform delayed transformation of row below +* . Mth bulge. Exploit fact that first two elements +* . of row are actually zero. ==== +* + REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 ) + H( K+3, K ) = -REFSUM + H( K+3, K+1 ) = -REFSUM*V( 2, M ) + H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*V( 3, M ) +* +* ==== Calculate reflection to move +* . Mth bulge one step. ==== +* + BETA = H( K+1, K ) V( 2, M ) = H( K+2, K ) V( 3, M ) = H( K+3, K ) CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) ) @@ -332,7 +614,7 @@ H( K+3, K ) = ZERO ELSE * -* ==== Stating a new bulge here would +* ==== Starting a new bulge here would * . create only negligible fill. * . Replace the old reflector with * . the new one. ==== @@ -346,154 +628,32 @@ END IF END IF END IF - 20 CONTINUE -* -* ==== Generate a 2-by-2 reflection, if needed. ==== -* - K = KRCOL + 3*( M22-1 ) - IF( BMP22 ) THEN - IF( K.EQ.KTOP-1 ) THEN - CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ), - $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ), - $ V( 1, M22 ) ) - BETA = V( 1, M22 ) - CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) - ELSE - BETA = H( K+1, K ) - V( 2, M22 ) = H( K+2, K ) - CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) - H( K+1, K ) = BETA - H( K+2, K ) = ZERO - END IF - END IF -* -* ==== Multiply H by reflections from the left ==== -* - IF( ACCUM ) THEN - JBOT = MIN( NDCOL, KBOT ) - ELSE IF( WANTT ) THEN - JBOT = N - ELSE - JBOT = KBOT - END IF - DO 40 J = MAX( KTOP, KRCOL ), JBOT - MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 ) - DO 30 M = MTOP, MEND - K = KRCOL + 3*( M-1 ) - REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )* - $ H( K+2, J )+V( 3, M )*H( K+3, J ) ) - H( K+1, J ) = H( K+1, J ) - REFSUM - H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M ) - H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M ) - 30 CONTINUE - 40 CONTINUE - IF( BMP22 ) THEN - K = KRCOL + 3*( M22-1 ) - DO 50 J = MAX( K+1, KTOP ), JBOT - REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )* - $ H( K+2, J ) ) - H( K+1, J ) = H( K+1, J ) - REFSUM - H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 ) - 50 CONTINUE - END IF -* -* ==== Multiply H by reflections from the right. -* . Delay filling in the last row until the -* . vigilant deflation check is complete. ==== -* - IF( ACCUM ) THEN - JTOP = MAX( KTOP, INCOL ) - ELSE IF( WANTT ) THEN - JTOP = 1 - ELSE - JTOP = KTOP - END IF - DO 90 M = MTOP, MBOT - IF( V( 1, M ).NE.ZERO ) THEN - K = KRCOL + 3*( M-1 ) - DO 60 J = JTOP, MIN( KBOT, K+3 ) - REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )* - $ H( J, K+2 )+V( 3, M )*H( J, K+3 ) ) - H( J, K+1 ) = H( J, K+1 ) - REFSUM - H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M ) - H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M ) - 60 CONTINUE -* - IF( ACCUM ) THEN -* -* ==== Accumulate U. (If necessary, update Z later -* . with with an efficient matrix-matrix -* . multiply.) ==== -* - KMS = K - INCOL - DO 70 J = MAX( 1, KTOP-INCOL ), KDU - REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )* - $ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) ) - U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM - U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M ) - U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M ) - 70 CONTINUE - ELSE IF( WANTZ ) THEN -* -* ==== U is not accumulated, so update Z -* . now by multiplying by reflections -* . from the right. ==== -* - DO 80 J = ILOZ, IHIZ - REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )* - $ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) ) - Z( J, K+1 ) = Z( J, K+1 ) - REFSUM - Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M ) - Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M ) - 80 CONTINUE - END IF - END IF - 90 CONTINUE -* -* ==== Special case: 2-by-2 reflection (if needed) ==== * - K = KRCOL + 3*( M22-1 ) - IF( BMP22 ) THEN - IF ( V( 1, M22 ).NE.ZERO ) THEN - DO 100 J = JTOP, MIN( KBOT, K+3 ) - REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )* - $ H( J, K+2 ) ) - H( J, K+1 ) = H( J, K+1 ) - REFSUM - H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 ) - 100 CONTINUE -* - IF( ACCUM ) THEN - KMS = K - INCOL - DO 110 J = MAX( 1, KTOP-INCOL ), KDU - REFSUM = V( 1, M22 )*( U( J, KMS+1 )+ - $ V( 2, M22 )*U( J, KMS+2 ) ) - U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM - U( J, KMS+2 ) = U( J, KMS+2 ) - - $ REFSUM*V( 2, M22 ) - 110 CONTINUE - ELSE IF( WANTZ ) THEN - DO 120 J = ILOZ, IHIZ - REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )* - $ Z( J, K+2 ) ) - Z( J, K+1 ) = Z( J, K+1 ) - REFSUM - Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 ) - 120 CONTINUE - END IF - END IF - END IF -* -* ==== Vigilant deflation check ==== -* - MSTART = MTOP - IF( KRCOL+3*( MSTART-1 ).LT.KTOP ) - $ MSTART = MSTART + 1 - MEND = MBOT - IF( BMP22 ) - $ MEND = MEND + 1 - IF( KRCOL.EQ.KBOT-2 ) - $ MEND = MEND + 1 - DO 130 M = MSTART, MEND - K = MIN( KBOT-1, KRCOL+3*( M-1 ) ) +* ==== Apply reflection from the right and +* . the first column of update from the left. +* . These updates are required for the vigilant +* . deflation check. We still delay most of the +* . updates from the left for efficiency. ==== +* + T1 = V( 1, M ) + T2 = T1*V( 2, M ) + T3 = T1*V( 3, M ) + DO 70 J = JTOP, MIN( KBOT, K+3 ) + REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 ) + $ + V( 3, M )*H( J, K+3 ) + H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1 + H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2 + H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3 + 70 CONTINUE +* +* ==== Perform update from left for subsequent +* . column. ==== +* + REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 ) + $ + V( 3, M )*H( K+3, K+1 ) + H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1 + H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2 + H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3 * * ==== The following convergence test requires that * . the tradition small-compared-to-nearby-diagonals @@ -504,6 +664,8 @@ * . is zero (as done here) is traditional but probably * . unnecessary. ==== * + IF( K.LT.KTOP) + $ CYCLE IF( H( K+1, K ).NE.ZERO ) THEN TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) ) IF( TST1.EQ.ZERO ) THEN @@ -532,25 +694,86 @@ TST2 = H22*( H11 / SCL ) * IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE. - $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO + $ MAX( SMLNUM, ULP*TST2 ) ) THEN + H( K+1, K ) = ZERO + END IF END IF END IF - 130 CONTINUE + 80 CONTINUE * -* ==== Fill in the last row of each bulge. ==== +* ==== Multiply H by reflections from the left ==== * - MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 ) - DO 140 M = MTOP, MEND - K = KRCOL + 3*( M-1 ) - REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 ) - H( K+4, K+1 ) = -REFSUM - H( K+4, K+2 ) = -REFSUM*V( 2, M ) - H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M ) - 140 CONTINUE + IF( ACCUM ) THEN + JBOT = MIN( NDCOL, KBOT ) + ELSE IF( WANTT ) THEN + JBOT = N + ELSE + JBOT = KBOT + END IF +* + DO 100 M = MBOT, MTOP, -1 + K = KRCOL + 2*( M-1 ) + T1 = V( 1, M ) + T2 = T1*V( 2, M ) + T3 = T1*V( 3, M ) + DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT + REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J ) + $ + V( 3, M )*H( K+3, J ) + H( K+1, J ) = H( K+1, J ) - REFSUM*T1 + H( K+2, J ) = H( K+2, J ) - REFSUM*T2 + H( K+3, J ) = H( K+3, J ) - REFSUM*T3 + 90 CONTINUE + 100 CONTINUE +* +* ==== Accumulate orthogonal transformations. ==== +* + IF( ACCUM ) THEN +* +* ==== Accumulate U. (If needed, update Z later +* . with an efficient matrix-matrix +* . multiply.) ==== +* + DO 120 M = MBOT, MTOP, -1 + K = KRCOL + 2*( M-1 ) + KMS = K - INCOL + I2 = MAX( 1, KTOP-INCOL ) + I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 ) + I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 ) + T1 = V( 1, M ) + T2 = T1*V( 2, M ) + T3 = T1*V( 3, M ) + DO 110 J = I2, I4 + REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 ) + $ + V( 3, M )*U( J, KMS+3 ) + U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1 + U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2 + U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3 + 110 CONTINUE + 120 CONTINUE + ELSE IF( WANTZ ) THEN +* +* ==== U is not accumulated, so update Z +* . now by multiplying by reflections +* . from the right. ==== +* + DO 140 M = MBOT, MTOP, -1 + K = KRCOL + 2*( M-1 ) + T1 = V( 1, M ) + T2 = T1*V( 2, M ) + T3 = T1*V( 3, M ) + DO 130 J = ILOZ, IHIZ + REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 ) + $ + V( 3, M )*Z( J, K+3 ) + Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1 + Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2 + Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3 + 130 CONTINUE + 140 CONTINUE + END IF * * ==== End of near-the-diagonal bulge chase. ==== * - 150 CONTINUE + 145 CONTINUE * * ==== Use U (if accumulated) to update far-from-diagonal * . entries in H. If required, use U to update Z as @@ -564,220 +787,45 @@ JTOP = KTOP JBOT = KBOT END IF - IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR. - $ ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN + K1 = MAX( 1, KTOP-INCOL ) + NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1 +* +* ==== Horizontal Multiply ==== * -* ==== Updates not exploiting the 2-by-2 block -* . structure of U. K1 and NU keep track of -* . the location and size of U in the special -* . cases of introducing bulges and chasing -* . bulges off the bottom. In these special -* . cases and in case the number of shifts -* . is NS = 2, there is no 2-by-2 block -* . structure to exploit. ==== -* - K1 = MAX( 1, KTOP-INCOL ) - NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1 -* -* ==== Horizontal Multiply ==== -* - DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH - JLEN = MIN( NH, JBOT-JCOL+1 ) - CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ), + DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH + JLEN = MIN( NH, JBOT-JCOL+1 ) + CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ), $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH, $ LDWH ) - CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH, + CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH, $ H( INCOL+K1, JCOL ), LDH ) - 160 CONTINUE + 150 CONTINUE * -* ==== Vertical multiply ==== +* ==== Vertical multiply ==== * - DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV - JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW ) + DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV + JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW ) + CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE, + $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ), + $ LDU, ZERO, WV, LDWV ) + CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV, + $ H( JROW, INCOL+K1 ), LDH ) + 160 CONTINUE +* +* ==== Z multiply (also vertical) ==== +* + IF( WANTZ ) THEN + DO 170 JROW = ILOZ, IHIZ, NV + JLEN = MIN( NV, IHIZ-JROW+1 ) CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE, - $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ), + $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ), $ LDU, ZERO, WV, LDWV ) CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV, - $ H( JROW, INCOL+K1 ), LDH ) + $ Z( JROW, INCOL+K1 ), LDZ ) 170 CONTINUE -* -* ==== Z multiply (also vertical) ==== -* - IF( WANTZ ) THEN - DO 180 JROW = ILOZ, IHIZ, NV - JLEN = MIN( NV, IHIZ-JROW+1 ) - CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE, - $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ), - $ LDU, ZERO, WV, LDWV ) - CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV, - $ Z( JROW, INCOL+K1 ), LDZ ) - 180 CONTINUE - END IF - ELSE -* -* ==== Updates exploiting U's 2-by-2 block structure. -* . (I2, I4, J2, J4 are the last rows and columns -* . of the blocks.) ==== -* - I2 = ( KDU+1 ) / 2 - I4 = KDU - J2 = I4 - I2 - J4 = KDU -* -* ==== KZS and KNZ deal with the band of zeros -* . along the diagonal of one of the triangular -* . blocks. ==== -* - KZS = ( J4-J2 ) - ( NS+1 ) - KNZ = NS + 1 -* -* ==== Horizontal multiply ==== -* - DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH - JLEN = MIN( NH, JBOT-JCOL+1 ) -* -* ==== Copy bottom of H to top+KZS of scratch ==== -* (The first KZS rows get multiplied by zero.) ==== -* - CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ), - $ LDH, WH( KZS+1, 1 ), LDWH ) -* -* ==== Multiply by U21' ==== -* - CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH ) - CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE, - $ U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ), - $ LDWH ) -* -* ==== Multiply top of H by U11' ==== -* - CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU, - $ H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH ) -* -* ==== Copy top of H to bottom of WH ==== -* - CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH, - $ WH( I2+1, 1 ), LDWH ) -* -* ==== Multiply by U21' ==== -* - CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE, - $ U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH ) -* -* ==== Multiply by U22 ==== -* - CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE, - $ U( J2+1, I2+1 ), LDU, - $ H( INCOL+1+J2, JCOL ), LDH, ONE, - $ WH( I2+1, 1 ), LDWH ) -* -* ==== Copy it back ==== -* - CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH, - $ H( INCOL+1, JCOL ), LDH ) - 190 CONTINUE -* -* ==== Vertical multiply ==== -* - DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV - JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW ) -* -* ==== Copy right of H to scratch (the first KZS -* . columns get multiplied by zero) ==== -* - CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ), - $ LDH, WV( 1, 1+KZS ), LDWV ) -* -* ==== Multiply by U21 ==== -* - CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV ) - CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE, - $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ), - $ LDWV ) -* -* ==== Multiply by U11 ==== -* - CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE, - $ H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV, - $ LDWV ) -* -* ==== Copy left of H to right of scratch ==== -* - CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH, - $ WV( 1, 1+I2 ), LDWV ) -* -* ==== Multiply by U21 ==== -* - CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE, - $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV ) -* -* ==== Multiply by U22 ==== -* - CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE, - $ H( JROW, INCOL+1+J2 ), LDH, - $ U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ), - $ LDWV ) -* -* ==== Copy it back ==== -* - CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV, - $ H( JROW, INCOL+1 ), LDH ) - 200 CONTINUE -* -* ==== Multiply Z (also vertical) ==== -* - IF( WANTZ ) THEN - DO 210 JROW = ILOZ, IHIZ, NV - JLEN = MIN( NV, IHIZ-JROW+1 ) -* -* ==== Copy right of Z to left of scratch (first -* . KZS columns get multiplied by zero) ==== -* - CALL DLACPY( 'ALL', JLEN, KNZ, - $ Z( JROW, INCOL+1+J2 ), LDZ, - $ WV( 1, 1+KZS ), LDWV ) -* -* ==== Multiply by U12 ==== -* - CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, - $ LDWV ) - CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE, - $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ), - $ LDWV ) -* -* ==== Multiply by U11 ==== -* - CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE, - $ Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE, - $ WV, LDWV ) -* -* ==== Copy left of Z to right of scratch ==== -* - CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ), - $ LDZ, WV( 1, 1+I2 ), LDWV ) -* -* ==== Multiply by U21 ==== -* - CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE, - $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), - $ LDWV ) -* -* ==== Multiply by U22 ==== -* - CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE, - $ Z( JROW, INCOL+1+J2 ), LDZ, - $ U( J2+1, I2+1 ), LDU, ONE, - $ WV( 1, 1+I2 ), LDWV ) -* -* ==== Copy the result back to Z ==== -* - CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV, - $ Z( JROW, INCOL+1 ), LDZ ) - 210 CONTINUE - END IF END IF END IF - 220 CONTINUE + 180 CONTINUE * * ==== End of DLAQR5 ==== *