File:  [local] / rpl / lapack / lapack / dlaqr4.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:56 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAQR4 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr4.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr4.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr4.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
   22: *                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
   30: *      $                   Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *>    DLAQR4 implements one level of recursion for DLAQR0.
   40: *>    It is a complete implementation of the small bulge multi-shift
   41: *>    QR algorithm.  It may be called by DLAQR0 and, for large enough
   42: *>    deflation window size, it may be called by DLAQR3.  This
   43: *>    subroutine is identical to DLAQR0 except that it calls DLAQR2
   44: *>    instead of DLAQR3.
   45: *>
   46: *>    DLAQR4 computes the eigenvalues of a Hessenberg matrix H
   47: *>    and, optionally, the matrices T and Z from the Schur decomposition
   48: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
   49: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
   50: *>
   51: *>    Optionally Z may be postmultiplied into an input orthogonal
   52: *>    matrix Q so that this routine can give the Schur factorization
   53: *>    of a matrix A which has been reduced to the Hessenberg form H
   54: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] WANTT
   61: *> \verbatim
   62: *>          WANTT is LOGICAL
   63: *>          = .TRUE. : the full Schur form T is required;
   64: *>          = .FALSE.: only eigenvalues are required.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] WANTZ
   68: *> \verbatim
   69: *>          WANTZ is LOGICAL
   70: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   71: *>          = .FALSE.: Schur vectors are not required.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>           The order of the matrix H.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] ILO
   81: *> \verbatim
   82: *>          ILO is INTEGER
   83: *> \endverbatim
   84: *>
   85: *> \param[in] IHI
   86: *> \verbatim
   87: *>          IHI is INTEGER
   88: *>           It is assumed that H is already upper triangular in rows
   89: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
   90: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   91: *>           previous call to DGEBAL, and then passed to DGEHRD when the
   92: *>           matrix output by DGEBAL is reduced to Hessenberg form.
   93: *>           Otherwise, ILO and IHI should be set to 1 and N,
   94: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
   95: *>           If N = 0, then ILO = 1 and IHI = 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in,out] H
   99: *> \verbatim
  100: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
  101: *>           On entry, the upper Hessenberg matrix H.
  102: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
  103: *>           the upper quasi-triangular matrix T from the Schur
  104: *>           decomposition (the Schur form); 2-by-2 diagonal blocks
  105: *>           (corresponding to complex conjugate pairs of eigenvalues)
  106: *>           are returned in standard form, with H(i,i) = H(i+1,i+1)
  107: *>           and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
  108: *>           .FALSE., then the contents of H are unspecified on exit.
  109: *>           (The output value of H when INFO > 0 is given under the
  110: *>           description of INFO below.)
  111: *>
  112: *>           This subroutine may explicitly set H(i,j) = 0 for i > j and
  113: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDH
  117: *> \verbatim
  118: *>          LDH is INTEGER
  119: *>           The leading dimension of the array H. LDH >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WR
  123: *> \verbatim
  124: *>          WR is DOUBLE PRECISION array, dimension (IHI)
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WI
  128: *> \verbatim
  129: *>          WI is DOUBLE PRECISION array, dimension (IHI)
  130: *>           The real and imaginary parts, respectively, of the computed
  131: *>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
  132: *>           and WI(ILO:IHI). If two eigenvalues are computed as a
  133: *>           complex conjugate pair, they are stored in consecutive
  134: *>           elements of WR and WI, say the i-th and (i+1)th, with
  135: *>           WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
  136: *>           the eigenvalues are stored in the same order as on the
  137: *>           diagonal of the Schur form returned in H, with
  138: *>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
  139: *>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
  140: *>           WI(i+1) = -WI(i).
  141: *> \endverbatim
  142: *>
  143: *> \param[in] ILOZ
  144: *> \verbatim
  145: *>          ILOZ is INTEGER
  146: *> \endverbatim
  147: *>
  148: *> \param[in] IHIZ
  149: *> \verbatim
  150: *>          IHIZ is INTEGER
  151: *>           Specify the rows of Z to which transformations must be
  152: *>           applied if WANTZ is .TRUE..
  153: *>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  154: *> \endverbatim
  155: *>
  156: *> \param[in,out] Z
  157: *> \verbatim
  158: *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
  159: *>           If WANTZ is .FALSE., then Z is not referenced.
  160: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  161: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  162: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  163: *>           (The output value of Z when INFO > 0 is given under
  164: *>           the description of INFO below.)
  165: *> \endverbatim
  166: *>
  167: *> \param[in] LDZ
  168: *> \verbatim
  169: *>          LDZ is INTEGER
  170: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
  171: *>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] WORK
  175: *> \verbatim
  176: *>          WORK is DOUBLE PRECISION array, dimension LWORK
  177: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
  178: *>           the optimal value for LWORK.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] LWORK
  182: *> \verbatim
  183: *>          LWORK is INTEGER
  184: *>           The dimension of the array WORK.  LWORK >= max(1,N)
  185: *>           is sufficient, but LWORK typically as large as 6*N may
  186: *>           be required for optimal performance.  A workspace query
  187: *>           to determine the optimal workspace size is recommended.
  188: *>
  189: *>           If LWORK = -1, then DLAQR4 does a workspace query.
  190: *>           In this case, DLAQR4 checks the input parameters and
  191: *>           estimates the optimal workspace size for the given
  192: *>           values of N, ILO and IHI.  The estimate is returned
  193: *>           in WORK(1).  No error message related to LWORK is
  194: *>           issued by XERBLA.  Neither H nor Z are accessed.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] INFO
  198: *> \verbatim
  199: *>          INFO is INTEGER
  200: *>             = 0:  successful exit
  201: *>             > 0:  if INFO = i, DLAQR4 failed to compute all of
  202: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  203: *>                and WI contain those eigenvalues which have been
  204: *>                successfully computed.  (Failures are rare.)
  205: *>
  206: *>                If INFO > 0 and WANT is .FALSE., then on exit,
  207: *>                the remaining unconverged eigenvalues are the eigen-
  208: *>                values of the upper Hessenberg matrix rows and
  209: *>                columns ILO through INFO of the final, output
  210: *>                value of H.
  211: *>
  212: *>                If INFO > 0 and WANTT is .TRUE., then on exit
  213: *>
  214: *>           (*)  (initial value of H)*U  = U*(final value of H)
  215: *>
  216: *>                where U is a orthogonal matrix.  The final
  217: *>                value of  H is upper Hessenberg and triangular in
  218: *>                rows and columns INFO+1 through IHI.
  219: *>
  220: *>                If INFO > 0 and WANTZ is .TRUE., then on exit
  221: *>
  222: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  223: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  224: *>
  225: *>                where U is the orthogonal matrix in (*) (regard-
  226: *>                less of the value of WANTT.)
  227: *>
  228: *>                If INFO > 0 and WANTZ is .FALSE., then Z is not
  229: *>                accessed.
  230: *> \endverbatim
  231: *
  232: *  Authors:
  233: *  ========
  234: *
  235: *> \author Univ. of Tennessee
  236: *> \author Univ. of California Berkeley
  237: *> \author Univ. of Colorado Denver
  238: *> \author NAG Ltd.
  239: *
  240: *> \ingroup doubleOTHERauxiliary
  241: *
  242: *> \par Contributors:
  243: *  ==================
  244: *>
  245: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  246: *>       University of Kansas, USA
  247: *
  248: *> \par References:
  249: *  ================
  250: *>
  251: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  252: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  253: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  254: *>       929--947, 2002.
  255: *> \n
  256: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  257: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  258: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  259: *>
  260: *  =====================================================================
  261:       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  262:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
  263: *
  264: *  -- LAPACK auxiliary routine --
  265: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  266: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  267: *
  268: *     .. Scalar Arguments ..
  269:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  270:       LOGICAL            WANTT, WANTZ
  271: *     ..
  272: *     .. Array Arguments ..
  273:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
  274:      $                   Z( LDZ, * )
  275: *     ..
  276: *
  277: *  ================================================================
  278: *     .. Parameters ..
  279: *
  280: *     ==== Matrices of order NTINY or smaller must be processed by
  281: *     .    DLAHQR because of insufficient subdiagonal scratch space.
  282: *     .    (This is a hard limit.) ====
  283:       INTEGER            NTINY
  284:       PARAMETER          ( NTINY = 15 )
  285: *
  286: *     ==== Exceptional deflation windows:  try to cure rare
  287: *     .    slow convergence by varying the size of the
  288: *     .    deflation window after KEXNW iterations. ====
  289:       INTEGER            KEXNW
  290:       PARAMETER          ( KEXNW = 5 )
  291: *
  292: *     ==== Exceptional shifts: try to cure rare slow convergence
  293: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  294: *     .    ====
  295:       INTEGER            KEXSH
  296:       PARAMETER          ( KEXSH = 6 )
  297: *
  298: *     ==== The constants WILK1 and WILK2 are used to form the
  299: *     .    exceptional shifts. ====
  300:       DOUBLE PRECISION   WILK1, WILK2
  301:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
  302:       DOUBLE PRECISION   ZERO, ONE
  303:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  304: *     ..
  305: *     .. Local Scalars ..
  306:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
  307:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  308:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  309:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  310:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  311:       LOGICAL            SORTED
  312:       CHARACTER          JBCMPZ*2
  313: *     ..
  314: *     .. External Functions ..
  315:       INTEGER            ILAENV
  316:       EXTERNAL           ILAENV
  317: *     ..
  318: *     .. Local Arrays ..
  319:       DOUBLE PRECISION   ZDUM( 1, 1 )
  320: *     ..
  321: *     .. External Subroutines ..
  322:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
  323: *     ..
  324: *     .. Intrinsic Functions ..
  325:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
  326: *     ..
  327: *     .. Executable Statements ..
  328:       INFO = 0
  329: *
  330: *     ==== Quick return for N = 0: nothing to do. ====
  331: *
  332:       IF( N.EQ.0 ) THEN
  333:          WORK( 1 ) = ONE
  334:          RETURN
  335:       END IF
  336: *
  337:       IF( N.LE.NTINY ) THEN
  338: *
  339: *        ==== Tiny matrices must use DLAHQR. ====
  340: *
  341:          LWKOPT = 1
  342:          IF( LWORK.NE.-1 )
  343:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  344:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
  345:       ELSE
  346: *
  347: *        ==== Use small bulge multi-shift QR with aggressive early
  348: *        .    deflation on larger-than-tiny matrices. ====
  349: *
  350: *        ==== Hope for the best. ====
  351: *
  352:          INFO = 0
  353: *
  354: *        ==== Set up job flags for ILAENV. ====
  355: *
  356:          IF( WANTT ) THEN
  357:             JBCMPZ( 1: 1 ) = 'S'
  358:          ELSE
  359:             JBCMPZ( 1: 1 ) = 'E'
  360:          END IF
  361:          IF( WANTZ ) THEN
  362:             JBCMPZ( 2: 2 ) = 'V'
  363:          ELSE
  364:             JBCMPZ( 2: 2 ) = 'N'
  365:          END IF
  366: *
  367: *        ==== NWR = recommended deflation window size.  At this
  368: *        .    point,  N .GT. NTINY = 15, so there is enough
  369: *        .    subdiagonal workspace for NWR.GE.2 as required.
  370: *        .    (In fact, there is enough subdiagonal space for
  371: *        .    NWR.GE.4.) ====
  372: *
  373:          NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  374:          NWR = MAX( 2, NWR )
  375:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  376: *
  377: *        ==== NSR = recommended number of simultaneous shifts.
  378: *        .    At this point N .GT. NTINY = 15, so there is at
  379: *        .    enough subdiagonal workspace for NSR to be even
  380: *        .    and greater than or equal to two as required. ====
  381: *
  382:          NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  383:          NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
  384:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  385: *
  386: *        ==== Estimate optimal workspace ====
  387: *
  388: *        ==== Workspace query call to DLAQR2 ====
  389: *
  390:          CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  391:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
  392:      $                N, H, LDH, WORK, -1 )
  393: *
  394: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
  395: *
  396:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  397: *
  398: *        ==== Quick return in case of workspace query. ====
  399: *
  400:          IF( LWORK.EQ.-1 ) THEN
  401:             WORK( 1 ) = DBLE( LWKOPT )
  402:             RETURN
  403:          END IF
  404: *
  405: *        ==== DLAHQR/DLAQR0 crossover point ====
  406: *
  407:          NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  408:          NMIN = MAX( NTINY, NMIN )
  409: *
  410: *        ==== Nibble crossover point ====
  411: *
  412:          NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  413:          NIBBLE = MAX( 0, NIBBLE )
  414: *
  415: *        ==== Accumulate reflections during ttswp?  Use block
  416: *        .    2-by-2 structure during matrix-matrix multiply? ====
  417: *
  418:          KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  419:          KACC22 = MAX( 0, KACC22 )
  420:          KACC22 = MIN( 2, KACC22 )
  421: *
  422: *        ==== NWMAX = the largest possible deflation window for
  423: *        .    which there is sufficient workspace. ====
  424: *
  425:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  426:          NW = NWMAX
  427: *
  428: *        ==== NSMAX = the Largest number of simultaneous shifts
  429: *        .    for which there is sufficient workspace. ====
  430: *
  431:          NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
  432:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  433: *
  434: *        ==== NDFL: an iteration count restarted at deflation. ====
  435: *
  436:          NDFL = 1
  437: *
  438: *        ==== ITMAX = iteration limit ====
  439: *
  440:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  441: *
  442: *        ==== Last row and column in the active block ====
  443: *
  444:          KBOT = IHI
  445: *
  446: *        ==== Main Loop ====
  447: *
  448:          DO 80 IT = 1, ITMAX
  449: *
  450: *           ==== Done when KBOT falls below ILO ====
  451: *
  452:             IF( KBOT.LT.ILO )
  453:      $         GO TO 90
  454: *
  455: *           ==== Locate active block ====
  456: *
  457:             DO 10 K = KBOT, ILO + 1, -1
  458:                IF( H( K, K-1 ).EQ.ZERO )
  459:      $            GO TO 20
  460:    10       CONTINUE
  461:             K = ILO
  462:    20       CONTINUE
  463:             KTOP = K
  464: *
  465: *           ==== Select deflation window size:
  466: *           .    Typical Case:
  467: *           .      If possible and advisable, nibble the entire
  468: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  469: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  470: *           .      the smaller corresponding subdiagonal entry
  471: *           .      (a heuristic).
  472: *           .
  473: *           .    Exceptional Case:
  474: *           .      If there have been no deflations in KEXNW or
  475: *           .      more iterations, then vary the deflation window
  476: *           .      size.   At first, because, larger windows are,
  477: *           .      in general, more powerful than smaller ones,
  478: *           .      rapidly increase the window to the maximum possible.
  479: *           .      Then, gradually reduce the window size. ====
  480: *
  481:             NH = KBOT - KTOP + 1
  482:             NWUPBD = MIN( NH, NWMAX )
  483:             IF( NDFL.LT.KEXNW ) THEN
  484:                NW = MIN( NWUPBD, NWR )
  485:             ELSE
  486:                NW = MIN( NWUPBD, 2*NW )
  487:             END IF
  488:             IF( NW.LT.NWMAX ) THEN
  489:                IF( NW.GE.NH-1 ) THEN
  490:                   NW = NH
  491:                ELSE
  492:                   KWTOP = KBOT - NW + 1
  493:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
  494:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  495:                END IF
  496:             END IF
  497:             IF( NDFL.LT.KEXNW ) THEN
  498:                NDEC = -1
  499:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  500:                NDEC = NDEC + 1
  501:                IF( NW-NDEC.LT.2 )
  502:      $            NDEC = 0
  503:                NW = NW - NDEC
  504:             END IF
  505: *
  506: *           ==== Aggressive early deflation:
  507: *           .    split workspace under the subdiagonal into
  508: *           .      - an nw-by-nw work array V in the lower
  509: *           .        left-hand-corner,
  510: *           .      - an NW-by-at-least-NW-but-more-is-better
  511: *           .        (NW-by-NHO) horizontal work array along
  512: *           .        the bottom edge,
  513: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  514: *           .        vertical work array along the left-hand-edge.
  515: *           .        ====
  516: *
  517:             KV = N - NW + 1
  518:             KT = NW + 1
  519:             NHO = ( N-NW-1 ) - KT + 1
  520:             KWV = NW + 2
  521:             NVE = ( N-NW ) - KWV + 1
  522: *
  523: *           ==== Aggressive early deflation ====
  524: *
  525:             CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  526:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
  527:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
  528:      $                   WORK, LWORK )
  529: *
  530: *           ==== Adjust KBOT accounting for new deflations. ====
  531: *
  532:             KBOT = KBOT - LD
  533: *
  534: *           ==== KS points to the shifts. ====
  535: *
  536:             KS = KBOT - LS + 1
  537: *
  538: *           ==== Skip an expensive QR sweep if there is a (partly
  539: *           .    heuristic) reason to expect that many eigenvalues
  540: *           .    will deflate without it.  Here, the QR sweep is
  541: *           .    skipped if many eigenvalues have just been deflated
  542: *           .    or if the remaining active block is small.
  543: *
  544:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  545:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  546: *
  547: *              ==== NS = nominal number of simultaneous shifts.
  548: *              .    This may be lowered (slightly) if DLAQR2
  549: *              .    did not provide that many shifts. ====
  550: *
  551:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  552:                NS = NS - MOD( NS, 2 )
  553: *
  554: *              ==== If there have been no deflations
  555: *              .    in a multiple of KEXSH iterations,
  556: *              .    then try exceptional shifts.
  557: *              .    Otherwise use shifts provided by
  558: *              .    DLAQR2 above or from the eigenvalues
  559: *              .    of a trailing principal submatrix. ====
  560: *
  561:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  562:                   KS = KBOT - NS + 1
  563:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
  564:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  565:                      AA = WILK1*SS + H( I, I )
  566:                      BB = SS
  567:                      CC = WILK2*SS
  568:                      DD = AA
  569:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
  570:      $                            WR( I ), WI( I ), CS, SN )
  571:    30             CONTINUE
  572:                   IF( KS.EQ.KTOP ) THEN
  573:                      WR( KS+1 ) = H( KS+1, KS+1 )
  574:                      WI( KS+1 ) = ZERO
  575:                      WR( KS ) = WR( KS+1 )
  576:                      WI( KS ) = WI( KS+1 )
  577:                   END IF
  578:                ELSE
  579: *
  580: *                 ==== Got NS/2 or fewer shifts? Use DLAHQR
  581: *                 .    on a trailing principal submatrix to
  582: *                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
  583: *                 .    there is enough space below the subdiagonal
  584: *                 .    to fit an NS-by-NS scratch array.) ====
  585: *
  586:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  587:                      KS = KBOT - NS + 1
  588:                      KT = N - NS + 1
  589:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  590:      $                            H( KT, 1 ), LDH )
  591:                      CALL DLAHQR( .false., .false., NS, 1, NS,
  592:      $                            H( KT, 1 ), LDH, WR( KS ), WI( KS ),
  593:      $                            1, 1, ZDUM, 1, INF )
  594:                      KS = KS + INF
  595: *
  596: *                    ==== In case of a rare QR failure use
  597: *                    .    eigenvalues of the trailing 2-by-2
  598: *                    .    principal submatrix.  ====
  599: *
  600:                      IF( KS.GE.KBOT ) THEN
  601:                         AA = H( KBOT-1, KBOT-1 )
  602:                         CC = H( KBOT, KBOT-1 )
  603:                         BB = H( KBOT-1, KBOT )
  604:                         DD = H( KBOT, KBOT )
  605:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
  606:      $                               WI( KBOT-1 ), WR( KBOT ),
  607:      $                               WI( KBOT ), CS, SN )
  608:                         KS = KBOT - 1
  609:                      END IF
  610:                   END IF
  611: *
  612:                   IF( KBOT-KS+1.GT.NS ) THEN
  613: *
  614: *                    ==== Sort the shifts (Helps a little)
  615: *                    .    Bubble sort keeps complex conjugate
  616: *                    .    pairs together. ====
  617: *
  618:                      SORTED = .false.
  619:                      DO 50 K = KBOT, KS + 1, -1
  620:                         IF( SORTED )
  621:      $                     GO TO 60
  622:                         SORTED = .true.
  623:                         DO 40 I = KS, K - 1
  624:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
  625:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
  626:                               SORTED = .false.
  627: *
  628:                               SWAP = WR( I )
  629:                               WR( I ) = WR( I+1 )
  630:                               WR( I+1 ) = SWAP
  631: *
  632:                               SWAP = WI( I )
  633:                               WI( I ) = WI( I+1 )
  634:                               WI( I+1 ) = SWAP
  635:                            END IF
  636:    40                   CONTINUE
  637:    50                CONTINUE
  638:    60                CONTINUE
  639:                   END IF
  640: *
  641: *                 ==== Shuffle shifts into pairs of real shifts
  642: *                 .    and pairs of complex conjugate shifts
  643: *                 .    assuming complex conjugate shifts are
  644: *                 .    already adjacent to one another. (Yes,
  645: *                 .    they are.)  ====
  646: *
  647:                   DO 70 I = KBOT, KS + 2, -2
  648:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
  649: *
  650:                         SWAP = WR( I )
  651:                         WR( I ) = WR( I-1 )
  652:                         WR( I-1 ) = WR( I-2 )
  653:                         WR( I-2 ) = SWAP
  654: *
  655:                         SWAP = WI( I )
  656:                         WI( I ) = WI( I-1 )
  657:                         WI( I-1 ) = WI( I-2 )
  658:                         WI( I-2 ) = SWAP
  659:                      END IF
  660:    70             CONTINUE
  661:                END IF
  662: *
  663: *              ==== If there are only two shifts and both are
  664: *              .    real, then use only one.  ====
  665: *
  666:                IF( KBOT-KS+1.EQ.2 ) THEN
  667:                   IF( WI( KBOT ).EQ.ZERO ) THEN
  668:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
  669:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  670:                         WR( KBOT-1 ) = WR( KBOT )
  671:                      ELSE
  672:                         WR( KBOT ) = WR( KBOT-1 )
  673:                      END IF
  674:                   END IF
  675:                END IF
  676: *
  677: *              ==== Use up to NS of the the smallest magnitude
  678: *              .    shifts.  If there aren't NS shifts available,
  679: *              .    then use them all, possibly dropping one to
  680: *              .    make the number of shifts even. ====
  681: *
  682:                NS = MIN( NS, KBOT-KS+1 )
  683:                NS = NS - MOD( NS, 2 )
  684:                KS = KBOT - NS + 1
  685: *
  686: *              ==== Small-bulge multi-shift QR sweep:
  687: *              .    split workspace under the subdiagonal into
  688: *              .    - a KDU-by-KDU work array U in the lower
  689: *              .      left-hand-corner,
  690: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  691: *              .      (KDU-by-NHo) horizontal work array WH along
  692: *              .      the bottom edge,
  693: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  694: *              .      (NVE-by-KDU) vertical work WV arrow along
  695: *              .      the left-hand-edge. ====
  696: *
  697:                KDU = 2*NS
  698:                KU = N - KDU + 1
  699:                KWH = KDU + 1
  700:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  701:                KWV = KDU + 4
  702:                NVE = N - KDU - KWV + 1
  703: *
  704: *              ==== Small-bulge multi-shift QR sweep ====
  705: *
  706:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  707:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
  708:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
  709:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
  710:             END IF
  711: *
  712: *           ==== Note progress (or the lack of it). ====
  713: *
  714:             IF( LD.GT.0 ) THEN
  715:                NDFL = 1
  716:             ELSE
  717:                NDFL = NDFL + 1
  718:             END IF
  719: *
  720: *           ==== End of main loop ====
  721:    80    CONTINUE
  722: *
  723: *        ==== Iteration limit exceeded.  Set INFO to show where
  724: *        .    the problem occurred and exit. ====
  725: *
  726:          INFO = KBOT
  727:    90    CONTINUE
  728:       END IF
  729: *
  730: *     ==== Return the optimal value of LWORK. ====
  731: *
  732:       WORK( 1 ) = DBLE( LWKOPT )
  733: *
  734: *     ==== End of DLAQR4 ====
  735: *
  736:       END

CVSweb interface <joel.bertrand@systella.fr>