File:  [local] / rpl / lapack / lapack / dlaqr4.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:19 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
    2:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   10:       LOGICAL            WANTT, WANTZ
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
   14:      $                   Z( LDZ, * )
   15: *     ..
   16: *
   17: *     This subroutine implements one level of recursion for DLAQR0.
   18: *     It is a complete implementation of the small bulge multi-shift
   19: *     QR algorithm.  It may be called by DLAQR0 and, for large enough
   20: *     deflation window size, it may be called by DLAQR3.  This
   21: *     subroutine is identical to DLAQR0 except that it calls DLAQR2
   22: *     instead of DLAQR3.
   23: *
   24: *     Purpose
   25: *     =======
   26: *
   27: *     DLAQR4 computes the eigenvalues of a Hessenberg matrix H
   28: *     and, optionally, the matrices T and Z from the Schur decomposition
   29: *     H = Z T Z**T, where T is an upper quasi-triangular matrix (the
   30: *     Schur form), and Z is the orthogonal matrix of Schur vectors.
   31: *
   32: *     Optionally Z may be postmultiplied into an input orthogonal
   33: *     matrix Q so that this routine can give the Schur factorization
   34: *     of a matrix A which has been reduced to the Hessenberg form H
   35: *     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
   36: *
   37: *     Arguments
   38: *     =========
   39: *
   40: *     WANTT   (input) LOGICAL
   41: *          = .TRUE. : the full Schur form T is required;
   42: *          = .FALSE.: only eigenvalues are required.
   43: *
   44: *     WANTZ   (input) LOGICAL
   45: *          = .TRUE. : the matrix of Schur vectors Z is required;
   46: *          = .FALSE.: Schur vectors are not required.
   47: *
   48: *     N     (input) INTEGER
   49: *           The order of the matrix H.  N .GE. 0.
   50: *
   51: *     ILO   (input) INTEGER
   52: *     IHI   (input) INTEGER
   53: *           It is assumed that H is already upper triangular in rows
   54: *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
   55: *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   56: *           previous call to DGEBAL, and then passed to DGEHRD when the
   57: *           matrix output by DGEBAL is reduced to Hessenberg form.
   58: *           Otherwise, ILO and IHI should be set to 1 and N,
   59: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
   60: *           If N = 0, then ILO = 1 and IHI = 0.
   61: *
   62: *     H     (input/output) DOUBLE PRECISION array, dimension (LDH,N)
   63: *           On entry, the upper Hessenberg matrix H.
   64: *           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
   65: *           the upper quasi-triangular matrix T from the Schur
   66: *           decomposition (the Schur form); 2-by-2 diagonal blocks
   67: *           (corresponding to complex conjugate pairs of eigenvalues)
   68: *           are returned in standard form, with H(i,i) = H(i+1,i+1)
   69: *           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
   70: *           .FALSE., then the contents of H are unspecified on exit.
   71: *           (The output value of H when INFO.GT.0 is given under the
   72: *           description of INFO below.)
   73: *
   74: *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
   75: *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
   76: *
   77: *     LDH   (input) INTEGER
   78: *           The leading dimension of the array H. LDH .GE. max(1,N).
   79: *
   80: *     WR    (output) DOUBLE PRECISION array, dimension (IHI)
   81: *     WI    (output) DOUBLE PRECISION array, dimension (IHI)
   82: *           The real and imaginary parts, respectively, of the computed
   83: *           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
   84: *           and WI(ILO:IHI). If two eigenvalues are computed as a
   85: *           complex conjugate pair, they are stored in consecutive
   86: *           elements of WR and WI, say the i-th and (i+1)th, with
   87: *           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
   88: *           the eigenvalues are stored in the same order as on the
   89: *           diagonal of the Schur form returned in H, with
   90: *           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
   91: *           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
   92: *           WI(i+1) = -WI(i).
   93: *
   94: *     ILOZ     (input) INTEGER
   95: *     IHIZ     (input) INTEGER
   96: *           Specify the rows of Z to which transformations must be
   97: *           applied if WANTZ is .TRUE..
   98: *           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
   99: *
  100: *     Z     (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
  101: *           If WANTZ is .FALSE., then Z is not referenced.
  102: *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  103: *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  104: *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  105: *           (The output value of Z when INFO.GT.0 is given under
  106: *           the description of INFO below.)
  107: *
  108: *     LDZ   (input) INTEGER
  109: *           The leading dimension of the array Z.  if WANTZ is .TRUE.
  110: *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
  111: *
  112: *     WORK  (workspace/output) DOUBLE PRECISION array, dimension LWORK
  113: *           On exit, if LWORK = -1, WORK(1) returns an estimate of
  114: *           the optimal value for LWORK.
  115: *
  116: *     LWORK (input) INTEGER
  117: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
  118: *           is sufficient, but LWORK typically as large as 6*N may
  119: *           be required for optimal performance.  A workspace query
  120: *           to determine the optimal workspace size is recommended.
  121: *
  122: *           If LWORK = -1, then DLAQR4 does a workspace query.
  123: *           In this case, DLAQR4 checks the input parameters and
  124: *           estimates the optimal workspace size for the given
  125: *           values of N, ILO and IHI.  The estimate is returned
  126: *           in WORK(1).  No error message related to LWORK is
  127: *           issued by XERBLA.  Neither H nor Z are accessed.
  128: *
  129: *
  130: *     INFO  (output) INTEGER
  131: *             =  0:  successful exit
  132: *           .GT. 0:  if INFO = i, DLAQR4 failed to compute all of
  133: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  134: *                and WI contain those eigenvalues which have been
  135: *                successfully computed.  (Failures are rare.)
  136: *
  137: *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
  138: *                the remaining unconverged eigenvalues are the eigen-
  139: *                values of the upper Hessenberg matrix rows and
  140: *                columns ILO through INFO of the final, output
  141: *                value of H.
  142: *
  143: *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
  144: *
  145: *           (*)  (initial value of H)*U  = U*(final value of H)
  146: *
  147: *                where U is an orthogonal matrix.  The final
  148: *                value of H is upper Hessenberg and quasi-triangular
  149: *                in rows and columns INFO+1 through IHI.
  150: *
  151: *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  152: *
  153: *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  154: *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  155: *
  156: *                where U is the orthogonal matrix in (*) (regard-
  157: *                less of the value of WANTT.)
  158: *
  159: *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
  160: *                accessed.
  161: *
  162: *     ================================================================
  163: *     Based on contributions by
  164: *        Karen Braman and Ralph Byers, Department of Mathematics,
  165: *        University of Kansas, USA
  166: *
  167: *     ================================================================
  168: *     References:
  169: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  170: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  171: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  172: *       929--947, 2002.
  173: *
  174: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  175: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  176: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
  177: *
  178: *     ================================================================
  179: *     .. Parameters ..
  180: *
  181: *     ==== Matrices of order NTINY or smaller must be processed by
  182: *     .    DLAHQR because of insufficient subdiagonal scratch space.
  183: *     .    (This is a hard limit.) ====
  184:       INTEGER            NTINY
  185:       PARAMETER          ( NTINY = 11 )
  186: *
  187: *     ==== Exceptional deflation windows:  try to cure rare
  188: *     .    slow convergence by varying the size of the
  189: *     .    deflation window after KEXNW iterations. ====
  190:       INTEGER            KEXNW
  191:       PARAMETER          ( KEXNW = 5 )
  192: *
  193: *     ==== Exceptional shifts: try to cure rare slow convergence
  194: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  195: *     .    ====
  196:       INTEGER            KEXSH
  197:       PARAMETER          ( KEXSH = 6 )
  198: *
  199: *     ==== The constants WILK1 and WILK2 are used to form the
  200: *     .    exceptional shifts. ====
  201:       DOUBLE PRECISION   WILK1, WILK2
  202:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
  203:       DOUBLE PRECISION   ZERO, ONE
  204:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  205: *     ..
  206: *     .. Local Scalars ..
  207:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
  208:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  209:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  210:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  211:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  212:       LOGICAL            SORTED
  213:       CHARACTER          JBCMPZ*2
  214: *     ..
  215: *     .. External Functions ..
  216:       INTEGER            ILAENV
  217:       EXTERNAL           ILAENV
  218: *     ..
  219: *     .. Local Arrays ..
  220:       DOUBLE PRECISION   ZDUM( 1, 1 )
  221: *     ..
  222: *     .. External Subroutines ..
  223:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
  224: *     ..
  225: *     .. Intrinsic Functions ..
  226:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
  227: *     ..
  228: *     .. Executable Statements ..
  229:       INFO = 0
  230: *
  231: *     ==== Quick return for N = 0: nothing to do. ====
  232: *
  233:       IF( N.EQ.0 ) THEN
  234:          WORK( 1 ) = ONE
  235:          RETURN
  236:       END IF
  237: *
  238:       IF( N.LE.NTINY ) THEN
  239: *
  240: *        ==== Tiny matrices must use DLAHQR. ====
  241: *
  242:          LWKOPT = 1
  243:          IF( LWORK.NE.-1 )
  244:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  245:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
  246:       ELSE
  247: *
  248: *        ==== Use small bulge multi-shift QR with aggressive early
  249: *        .    deflation on larger-than-tiny matrices. ====
  250: *
  251: *        ==== Hope for the best. ====
  252: *
  253:          INFO = 0
  254: *
  255: *        ==== Set up job flags for ILAENV. ====
  256: *
  257:          IF( WANTT ) THEN
  258:             JBCMPZ( 1: 1 ) = 'S'
  259:          ELSE
  260:             JBCMPZ( 1: 1 ) = 'E'
  261:          END IF
  262:          IF( WANTZ ) THEN
  263:             JBCMPZ( 2: 2 ) = 'V'
  264:          ELSE
  265:             JBCMPZ( 2: 2 ) = 'N'
  266:          END IF
  267: *
  268: *        ==== NWR = recommended deflation window size.  At this
  269: *        .    point,  N .GT. NTINY = 11, so there is enough
  270: *        .    subdiagonal workspace for NWR.GE.2 as required.
  271: *        .    (In fact, there is enough subdiagonal space for
  272: *        .    NWR.GE.3.) ====
  273: *
  274:          NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  275:          NWR = MAX( 2, NWR )
  276:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  277: *
  278: *        ==== NSR = recommended number of simultaneous shifts.
  279: *        .    At this point N .GT. NTINY = 11, so there is at
  280: *        .    enough subdiagonal workspace for NSR to be even
  281: *        .    and greater than or equal to two as required. ====
  282: *
  283:          NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  284:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
  285:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  286: *
  287: *        ==== Estimate optimal workspace ====
  288: *
  289: *        ==== Workspace query call to DLAQR2 ====
  290: *
  291:          CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  292:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
  293:      $                N, H, LDH, WORK, -1 )
  294: *
  295: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
  296: *
  297:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  298: *
  299: *        ==== Quick return in case of workspace query. ====
  300: *
  301:          IF( LWORK.EQ.-1 ) THEN
  302:             WORK( 1 ) = DBLE( LWKOPT )
  303:             RETURN
  304:          END IF
  305: *
  306: *        ==== DLAHQR/DLAQR0 crossover point ====
  307: *
  308:          NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  309:          NMIN = MAX( NTINY, NMIN )
  310: *
  311: *        ==== Nibble crossover point ====
  312: *
  313:          NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  314:          NIBBLE = MAX( 0, NIBBLE )
  315: *
  316: *        ==== Accumulate reflections during ttswp?  Use block
  317: *        .    2-by-2 structure during matrix-matrix multiply? ====
  318: *
  319:          KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  320:          KACC22 = MAX( 0, KACC22 )
  321:          KACC22 = MIN( 2, KACC22 )
  322: *
  323: *        ==== NWMAX = the largest possible deflation window for
  324: *        .    which there is sufficient workspace. ====
  325: *
  326:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  327:          NW = NWMAX
  328: *
  329: *        ==== NSMAX = the Largest number of simultaneous shifts
  330: *        .    for which there is sufficient workspace. ====
  331: *
  332:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
  333:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  334: *
  335: *        ==== NDFL: an iteration count restarted at deflation. ====
  336: *
  337:          NDFL = 1
  338: *
  339: *        ==== ITMAX = iteration limit ====
  340: *
  341:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  342: *
  343: *        ==== Last row and column in the active block ====
  344: *
  345:          KBOT = IHI
  346: *
  347: *        ==== Main Loop ====
  348: *
  349:          DO 80 IT = 1, ITMAX
  350: *
  351: *           ==== Done when KBOT falls below ILO ====
  352: *
  353:             IF( KBOT.LT.ILO )
  354:      $         GO TO 90
  355: *
  356: *           ==== Locate active block ====
  357: *
  358:             DO 10 K = KBOT, ILO + 1, -1
  359:                IF( H( K, K-1 ).EQ.ZERO )
  360:      $            GO TO 20
  361:    10       CONTINUE
  362:             K = ILO
  363:    20       CONTINUE
  364:             KTOP = K
  365: *
  366: *           ==== Select deflation window size:
  367: *           .    Typical Case:
  368: *           .      If possible and advisable, nibble the entire
  369: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  370: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  371: *           .      the smaller corresponding subdiagonal entry
  372: *           .      (a heuristic).
  373: *           .
  374: *           .    Exceptional Case:
  375: *           .      If there have been no deflations in KEXNW or
  376: *           .      more iterations, then vary the deflation window
  377: *           .      size.   At first, because, larger windows are,
  378: *           .      in general, more powerful than smaller ones,
  379: *           .      rapidly increase the window to the maximum possible.
  380: *           .      Then, gradually reduce the window size. ====
  381: *
  382:             NH = KBOT - KTOP + 1
  383:             NWUPBD = MIN( NH, NWMAX )
  384:             IF( NDFL.LT.KEXNW ) THEN
  385:                NW = MIN( NWUPBD, NWR )
  386:             ELSE
  387:                NW = MIN( NWUPBD, 2*NW )
  388:             END IF
  389:             IF( NW.LT.NWMAX ) THEN
  390:                IF( NW.GE.NH-1 ) THEN
  391:                   NW = NH
  392:                ELSE
  393:                   KWTOP = KBOT - NW + 1
  394:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
  395:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  396:                END IF
  397:             END IF
  398:             IF( NDFL.LT.KEXNW ) THEN
  399:                NDEC = -1
  400:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  401:                NDEC = NDEC + 1
  402:                IF( NW-NDEC.LT.2 )
  403:      $            NDEC = 0
  404:                NW = NW - NDEC
  405:             END IF
  406: *
  407: *           ==== Aggressive early deflation:
  408: *           .    split workspace under the subdiagonal into
  409: *           .      - an nw-by-nw work array V in the lower
  410: *           .        left-hand-corner,
  411: *           .      - an NW-by-at-least-NW-but-more-is-better
  412: *           .        (NW-by-NHO) horizontal work array along
  413: *           .        the bottom edge,
  414: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  415: *           .        vertical work array along the left-hand-edge.
  416: *           .        ====
  417: *
  418:             KV = N - NW + 1
  419:             KT = NW + 1
  420:             NHO = ( N-NW-1 ) - KT + 1
  421:             KWV = NW + 2
  422:             NVE = ( N-NW ) - KWV + 1
  423: *
  424: *           ==== Aggressive early deflation ====
  425: *
  426:             CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  427:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
  428:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
  429:      $                   WORK, LWORK )
  430: *
  431: *           ==== Adjust KBOT accounting for new deflations. ====
  432: *
  433:             KBOT = KBOT - LD
  434: *
  435: *           ==== KS points to the shifts. ====
  436: *
  437:             KS = KBOT - LS + 1
  438: *
  439: *           ==== Skip an expensive QR sweep if there is a (partly
  440: *           .    heuristic) reason to expect that many eigenvalues
  441: *           .    will deflate without it.  Here, the QR sweep is
  442: *           .    skipped if many eigenvalues have just been deflated
  443: *           .    or if the remaining active block is small.
  444: *
  445:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  446:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  447: *
  448: *              ==== NS = nominal number of simultaneous shifts.
  449: *              .    This may be lowered (slightly) if DLAQR2
  450: *              .    did not provide that many shifts. ====
  451: *
  452:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  453:                NS = NS - MOD( NS, 2 )
  454: *
  455: *              ==== If there have been no deflations
  456: *              .    in a multiple of KEXSH iterations,
  457: *              .    then try exceptional shifts.
  458: *              .    Otherwise use shifts provided by
  459: *              .    DLAQR2 above or from the eigenvalues
  460: *              .    of a trailing principal submatrix. ====
  461: *
  462:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  463:                   KS = KBOT - NS + 1
  464:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
  465:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  466:                      AA = WILK1*SS + H( I, I )
  467:                      BB = SS
  468:                      CC = WILK2*SS
  469:                      DD = AA
  470:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
  471:      $                            WR( I ), WI( I ), CS, SN )
  472:    30             CONTINUE
  473:                   IF( KS.EQ.KTOP ) THEN
  474:                      WR( KS+1 ) = H( KS+1, KS+1 )
  475:                      WI( KS+1 ) = ZERO
  476:                      WR( KS ) = WR( KS+1 )
  477:                      WI( KS ) = WI( KS+1 )
  478:                   END IF
  479:                ELSE
  480: *
  481: *                 ==== Got NS/2 or fewer shifts? Use DLAHQR
  482: *                 .    on a trailing principal submatrix to
  483: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
  484: *                 .    there is enough space below the subdiagonal
  485: *                 .    to fit an NS-by-NS scratch array.) ====
  486: *
  487:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  488:                      KS = KBOT - NS + 1
  489:                      KT = N - NS + 1
  490:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  491:      $                            H( KT, 1 ), LDH )
  492:                      CALL DLAHQR( .false., .false., NS, 1, NS,
  493:      $                            H( KT, 1 ), LDH, WR( KS ), WI( KS ),
  494:      $                            1, 1, ZDUM, 1, INF )
  495:                      KS = KS + INF
  496: *
  497: *                    ==== In case of a rare QR failure use
  498: *                    .    eigenvalues of the trailing 2-by-2
  499: *                    .    principal submatrix.  ====
  500: *
  501:                      IF( KS.GE.KBOT ) THEN
  502:                         AA = H( KBOT-1, KBOT-1 )
  503:                         CC = H( KBOT, KBOT-1 )
  504:                         BB = H( KBOT-1, KBOT )
  505:                         DD = H( KBOT, KBOT )
  506:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
  507:      $                               WI( KBOT-1 ), WR( KBOT ),
  508:      $                               WI( KBOT ), CS, SN )
  509:                         KS = KBOT - 1
  510:                      END IF
  511:                   END IF
  512: *
  513:                   IF( KBOT-KS+1.GT.NS ) THEN
  514: *
  515: *                    ==== Sort the shifts (Helps a little)
  516: *                    .    Bubble sort keeps complex conjugate
  517: *                    .    pairs together. ====
  518: *
  519:                      SORTED = .false.
  520:                      DO 50 K = KBOT, KS + 1, -1
  521:                         IF( SORTED )
  522:      $                     GO TO 60
  523:                         SORTED = .true.
  524:                         DO 40 I = KS, K - 1
  525:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
  526:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
  527:                               SORTED = .false.
  528: *
  529:                               SWAP = WR( I )
  530:                               WR( I ) = WR( I+1 )
  531:                               WR( I+1 ) = SWAP
  532: *
  533:                               SWAP = WI( I )
  534:                               WI( I ) = WI( I+1 )
  535:                               WI( I+1 ) = SWAP
  536:                            END IF
  537:    40                   CONTINUE
  538:    50                CONTINUE
  539:    60                CONTINUE
  540:                   END IF
  541: *
  542: *                 ==== Shuffle shifts into pairs of real shifts
  543: *                 .    and pairs of complex conjugate shifts
  544: *                 .    assuming complex conjugate shifts are
  545: *                 .    already adjacent to one another. (Yes,
  546: *                 .    they are.)  ====
  547: *
  548:                   DO 70 I = KBOT, KS + 2, -2
  549:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
  550: *
  551:                         SWAP = WR( I )
  552:                         WR( I ) = WR( I-1 )
  553:                         WR( I-1 ) = WR( I-2 )
  554:                         WR( I-2 ) = SWAP
  555: *
  556:                         SWAP = WI( I )
  557:                         WI( I ) = WI( I-1 )
  558:                         WI( I-1 ) = WI( I-2 )
  559:                         WI( I-2 ) = SWAP
  560:                      END IF
  561:    70             CONTINUE
  562:                END IF
  563: *
  564: *              ==== If there are only two shifts and both are
  565: *              .    real, then use only one.  ====
  566: *
  567:                IF( KBOT-KS+1.EQ.2 ) THEN
  568:                   IF( WI( KBOT ).EQ.ZERO ) THEN
  569:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
  570:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  571:                         WR( KBOT-1 ) = WR( KBOT )
  572:                      ELSE
  573:                         WR( KBOT ) = WR( KBOT-1 )
  574:                      END IF
  575:                   END IF
  576:                END IF
  577: *
  578: *              ==== Use up to NS of the the smallest magnatiude
  579: *              .    shifts.  If there aren't NS shifts available,
  580: *              .    then use them all, possibly dropping one to
  581: *              .    make the number of shifts even. ====
  582: *
  583:                NS = MIN( NS, KBOT-KS+1 )
  584:                NS = NS - MOD( NS, 2 )
  585:                KS = KBOT - NS + 1
  586: *
  587: *              ==== Small-bulge multi-shift QR sweep:
  588: *              .    split workspace under the subdiagonal into
  589: *              .    - a KDU-by-KDU work array U in the lower
  590: *              .      left-hand-corner,
  591: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  592: *              .      (KDU-by-NHo) horizontal work array WH along
  593: *              .      the bottom edge,
  594: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  595: *              .      (NVE-by-KDU) vertical work WV arrow along
  596: *              .      the left-hand-edge. ====
  597: *
  598:                KDU = 3*NS - 3
  599:                KU = N - KDU + 1
  600:                KWH = KDU + 1
  601:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  602:                KWV = KDU + 4
  603:                NVE = N - KDU - KWV + 1
  604: *
  605: *              ==== Small-bulge multi-shift QR sweep ====
  606: *
  607:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  608:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
  609:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
  610:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
  611:             END IF
  612: *
  613: *           ==== Note progress (or the lack of it). ====
  614: *
  615:             IF( LD.GT.0 ) THEN
  616:                NDFL = 1
  617:             ELSE
  618:                NDFL = NDFL + 1
  619:             END IF
  620: *
  621: *           ==== End of main loop ====
  622:    80    CONTINUE
  623: *
  624: *        ==== Iteration limit exceeded.  Set INFO to show where
  625: *        .    the problem occurred and exit. ====
  626: *
  627:          INFO = KBOT
  628:    90    CONTINUE
  629:       END IF
  630: *
  631: *     ==== Return the optimal value of LWORK. ====
  632: *
  633:       WORK( 1 ) = DBLE( LWKOPT )
  634: *
  635: *     ==== End of DLAQR4 ====
  636: *
  637:       END

CVSweb interface <joel.bertrand@systella.fr>