Annotation of rpl/lapack/lapack/dlaqr4.f, revision 1.19

1.11      bertrand    1: *> \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLAQR4 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr4.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr4.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr4.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                     22: *                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
                     26: *       LOGICAL            WANTT, WANTZ
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
                     30: *      $                   Z( LDZ, * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *>    DLAQR4 implements one level of recursion for DLAQR0.
                     40: *>    It is a complete implementation of the small bulge multi-shift
                     41: *>    QR algorithm.  It may be called by DLAQR0 and, for large enough
                     42: *>    deflation window size, it may be called by DLAQR3.  This
                     43: *>    subroutine is identical to DLAQR0 except that it calls DLAQR2
                     44: *>    instead of DLAQR3.
                     45: *>
                     46: *>    DLAQR4 computes the eigenvalues of a Hessenberg matrix H
                     47: *>    and, optionally, the matrices T and Z from the Schur decomposition
                     48: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
                     49: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
                     50: *>
                     51: *>    Optionally Z may be postmultiplied into an input orthogonal
                     52: *>    matrix Q so that this routine can give the Schur factorization
                     53: *>    of a matrix A which has been reduced to the Hessenberg form H
                     54: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] WANTT
                     61: *> \verbatim
                     62: *>          WANTT is LOGICAL
                     63: *>          = .TRUE. : the full Schur form T is required;
                     64: *>          = .FALSE.: only eigenvalues are required.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] WANTZ
                     68: *> \verbatim
                     69: *>          WANTZ is LOGICAL
                     70: *>          = .TRUE. : the matrix of Schur vectors Z is required;
                     71: *>          = .FALSE.: Schur vectors are not required.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] N
                     75: *> \verbatim
                     76: *>          N is INTEGER
1.18      bertrand   77: *>           The order of the matrix H.  N >= 0.
1.8       bertrand   78: *> \endverbatim
                     79: *>
                     80: *> \param[in] ILO
                     81: *> \verbatim
                     82: *>          ILO is INTEGER
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] IHI
                     86: *> \verbatim
                     87: *>          IHI is INTEGER
                     88: *>           It is assumed that H is already upper triangular in rows
1.18      bertrand   89: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
1.8       bertrand   90: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                     91: *>           previous call to DGEBAL, and then passed to DGEHRD when the
                     92: *>           matrix output by DGEBAL is reduced to Hessenberg form.
                     93: *>           Otherwise, ILO and IHI should be set to 1 and N,
1.18      bertrand   94: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
1.8       bertrand   95: *>           If N = 0, then ILO = 1 and IHI = 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in,out] H
                     99: *> \verbatim
                    100: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                    101: *>           On entry, the upper Hessenberg matrix H.
                    102: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
                    103: *>           the upper quasi-triangular matrix T from the Schur
                    104: *>           decomposition (the Schur form); 2-by-2 diagonal blocks
                    105: *>           (corresponding to complex conjugate pairs of eigenvalues)
                    106: *>           are returned in standard form, with H(i,i) = H(i+1,i+1)
1.18      bertrand  107: *>           and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
1.8       bertrand  108: *>           .FALSE., then the contents of H are unspecified on exit.
1.18      bertrand  109: *>           (The output value of H when INFO > 0 is given under the
1.8       bertrand  110: *>           description of INFO below.)
                    111: *>
1.18      bertrand  112: *>           This subroutine may explicitly set H(i,j) = 0 for i > j and
1.8       bertrand  113: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDH
                    117: *> \verbatim
                    118: *>          LDH is INTEGER
1.18      bertrand  119: *>           The leading dimension of the array H. LDH >= max(1,N).
1.8       bertrand  120: *> \endverbatim
                    121: *>
                    122: *> \param[out] WR
                    123: *> \verbatim
                    124: *>          WR is DOUBLE PRECISION array, dimension (IHI)
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WI
                    128: *> \verbatim
                    129: *>          WI is DOUBLE PRECISION array, dimension (IHI)
                    130: *>           The real and imaginary parts, respectively, of the computed
                    131: *>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
                    132: *>           and WI(ILO:IHI). If two eigenvalues are computed as a
                    133: *>           complex conjugate pair, they are stored in consecutive
                    134: *>           elements of WR and WI, say the i-th and (i+1)th, with
1.18      bertrand  135: *>           WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
1.8       bertrand  136: *>           the eigenvalues are stored in the same order as on the
                    137: *>           diagonal of the Schur form returned in H, with
                    138: *>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
                    139: *>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
                    140: *>           WI(i+1) = -WI(i).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] ILOZ
                    144: *> \verbatim
                    145: *>          ILOZ is INTEGER
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] IHIZ
                    149: *> \verbatim
                    150: *>          IHIZ is INTEGER
                    151: *>           Specify the rows of Z to which transformations must be
                    152: *>           applied if WANTZ is .TRUE..
1.18      bertrand  153: *>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
1.8       bertrand  154: *> \endverbatim
                    155: *>
                    156: *> \param[in,out] Z
                    157: *> \verbatim
                    158: *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
                    159: *>           If WANTZ is .FALSE., then Z is not referenced.
                    160: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                    161: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                    162: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
1.18      bertrand  163: *>           (The output value of Z when INFO > 0 is given under
1.8       bertrand  164: *>           the description of INFO below.)
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] LDZ
                    168: *> \verbatim
                    169: *>          LDZ is INTEGER
                    170: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
1.18      bertrand  171: *>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
1.8       bertrand  172: *> \endverbatim
                    173: *>
                    174: *> \param[out] WORK
                    175: *> \verbatim
                    176: *>          WORK is DOUBLE PRECISION array, dimension LWORK
                    177: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
                    178: *>           the optimal value for LWORK.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] LWORK
                    182: *> \verbatim
                    183: *>          LWORK is INTEGER
1.18      bertrand  184: *>           The dimension of the array WORK.  LWORK >= max(1,N)
1.8       bertrand  185: *>           is sufficient, but LWORK typically as large as 6*N may
                    186: *>           be required for optimal performance.  A workspace query
                    187: *>           to determine the optimal workspace size is recommended.
                    188: *>
                    189: *>           If LWORK = -1, then DLAQR4 does a workspace query.
                    190: *>           In this case, DLAQR4 checks the input parameters and
                    191: *>           estimates the optimal workspace size for the given
                    192: *>           values of N, ILO and IHI.  The estimate is returned
                    193: *>           in WORK(1).  No error message related to LWORK is
                    194: *>           issued by XERBLA.  Neither H nor Z are accessed.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] INFO
                    198: *> \verbatim
                    199: *>          INFO is INTEGER
1.18      bertrand  200: *>             = 0:  successful exit
                    201: *>             > 0:  if INFO = i, DLAQR4 failed to compute all of
1.8       bertrand  202: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                    203: *>                and WI contain those eigenvalues which have been
                    204: *>                successfully computed.  (Failures are rare.)
                    205: *>
1.18      bertrand  206: *>                If INFO > 0 and WANT is .FALSE., then on exit,
1.8       bertrand  207: *>                the remaining unconverged eigenvalues are the eigen-
                    208: *>                values of the upper Hessenberg matrix rows and
                    209: *>                columns ILO through INFO of the final, output
                    210: *>                value of H.
                    211: *>
1.18      bertrand  212: *>                If INFO > 0 and WANTT is .TRUE., then on exit
1.8       bertrand  213: *>
                    214: *>           (*)  (initial value of H)*U  = U*(final value of H)
                    215: *>
                    216: *>                where U is a orthogonal matrix.  The final
                    217: *>                value of  H is upper Hessenberg and triangular in
                    218: *>                rows and columns INFO+1 through IHI.
                    219: *>
1.18      bertrand  220: *>                If INFO > 0 and WANTZ is .TRUE., then on exit
1.8       bertrand  221: *>
                    222: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
                    223: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
                    224: *>
                    225: *>                where U is the orthogonal matrix in (*) (regard-
                    226: *>                less of the value of WANTT.)
                    227: *>
1.18      bertrand  228: *>                If INFO > 0 and WANTZ is .FALSE., then Z is not
1.8       bertrand  229: *>                accessed.
                    230: *> \endverbatim
                    231: *
                    232: *  Authors:
                    233: *  ========
                    234: *
1.15      bertrand  235: *> \author Univ. of Tennessee
                    236: *> \author Univ. of California Berkeley
                    237: *> \author Univ. of Colorado Denver
                    238: *> \author NAG Ltd.
1.8       bertrand  239: *
                    240: *> \ingroup doubleOTHERauxiliary
                    241: *
                    242: *> \par Contributors:
                    243: *  ==================
                    244: *>
                    245: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    246: *>       University of Kansas, USA
                    247: *
                    248: *> \par References:
                    249: *  ================
                    250: *>
                    251: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    252: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
                    253: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
                    254: *>       929--947, 2002.
                    255: *> \n
                    256: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    257: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
                    258: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
                    259: *>
                    260: *  =====================================================================
1.1       bertrand  261:       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                    262:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
                    263: *
1.19    ! bertrand  264: *  -- LAPACK auxiliary routine --
1.8       bertrand  265: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    266: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  267: *
                    268: *     .. Scalar Arguments ..
                    269:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
                    270:       LOGICAL            WANTT, WANTZ
                    271: *     ..
                    272: *     .. Array Arguments ..
                    273:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
                    274:      $                   Z( LDZ, * )
                    275: *     ..
                    276: *
1.8       bertrand  277: *  ================================================================
1.1       bertrand  278: *     .. Parameters ..
                    279: *
                    280: *     ==== Matrices of order NTINY or smaller must be processed by
                    281: *     .    DLAHQR because of insufficient subdiagonal scratch space.
                    282: *     .    (This is a hard limit.) ====
                    283:       INTEGER            NTINY
1.19    ! bertrand  284:       PARAMETER          ( NTINY = 15 )
1.1       bertrand  285: *
                    286: *     ==== Exceptional deflation windows:  try to cure rare
                    287: *     .    slow convergence by varying the size of the
                    288: *     .    deflation window after KEXNW iterations. ====
                    289:       INTEGER            KEXNW
                    290:       PARAMETER          ( KEXNW = 5 )
                    291: *
                    292: *     ==== Exceptional shifts: try to cure rare slow convergence
                    293: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
                    294: *     .    ====
                    295:       INTEGER            KEXSH
                    296:       PARAMETER          ( KEXSH = 6 )
                    297: *
                    298: *     ==== The constants WILK1 and WILK2 are used to form the
                    299: *     .    exceptional shifts. ====
                    300:       DOUBLE PRECISION   WILK1, WILK2
                    301:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
                    302:       DOUBLE PRECISION   ZERO, ONE
                    303:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    304: *     ..
                    305: *     .. Local Scalars ..
                    306:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
                    307:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
                    308:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
                    309:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
                    310:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
                    311:       LOGICAL            SORTED
                    312:       CHARACTER          JBCMPZ*2
                    313: *     ..
                    314: *     .. External Functions ..
                    315:       INTEGER            ILAENV
                    316:       EXTERNAL           ILAENV
                    317: *     ..
                    318: *     .. Local Arrays ..
                    319:       DOUBLE PRECISION   ZDUM( 1, 1 )
                    320: *     ..
                    321: *     .. External Subroutines ..
                    322:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
                    323: *     ..
                    324: *     .. Intrinsic Functions ..
                    325:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
                    326: *     ..
                    327: *     .. Executable Statements ..
                    328:       INFO = 0
                    329: *
                    330: *     ==== Quick return for N = 0: nothing to do. ====
                    331: *
                    332:       IF( N.EQ.0 ) THEN
                    333:          WORK( 1 ) = ONE
                    334:          RETURN
                    335:       END IF
                    336: *
                    337:       IF( N.LE.NTINY ) THEN
                    338: *
                    339: *        ==== Tiny matrices must use DLAHQR. ====
                    340: *
                    341:          LWKOPT = 1
                    342:          IF( LWORK.NE.-1 )
                    343:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                    344:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
                    345:       ELSE
                    346: *
                    347: *        ==== Use small bulge multi-shift QR with aggressive early
                    348: *        .    deflation on larger-than-tiny matrices. ====
                    349: *
                    350: *        ==== Hope for the best. ====
                    351: *
                    352:          INFO = 0
                    353: *
                    354: *        ==== Set up job flags for ILAENV. ====
                    355: *
                    356:          IF( WANTT ) THEN
                    357:             JBCMPZ( 1: 1 ) = 'S'
                    358:          ELSE
                    359:             JBCMPZ( 1: 1 ) = 'E'
                    360:          END IF
                    361:          IF( WANTZ ) THEN
                    362:             JBCMPZ( 2: 2 ) = 'V'
                    363:          ELSE
                    364:             JBCMPZ( 2: 2 ) = 'N'
                    365:          END IF
                    366: *
                    367: *        ==== NWR = recommended deflation window size.  At this
1.19    ! bertrand  368: *        .    point,  N .GT. NTINY = 15, so there is enough
1.1       bertrand  369: *        .    subdiagonal workspace for NWR.GE.2 as required.
                    370: *        .    (In fact, there is enough subdiagonal space for
1.19    ! bertrand  371: *        .    NWR.GE.4.) ====
1.1       bertrand  372: *
                    373:          NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
                    374:          NWR = MAX( 2, NWR )
                    375:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
                    376: *
                    377: *        ==== NSR = recommended number of simultaneous shifts.
1.19    ! bertrand  378: *        .    At this point N .GT. NTINY = 15, so there is at
1.1       bertrand  379: *        .    enough subdiagonal workspace for NSR to be even
                    380: *        .    and greater than or equal to two as required. ====
                    381: *
                    382:          NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
1.19    ! bertrand  383:          NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
1.1       bertrand  384:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
                    385: *
                    386: *        ==== Estimate optimal workspace ====
                    387: *
                    388: *        ==== Workspace query call to DLAQR2 ====
                    389: *
                    390:          CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
                    391:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
                    392:      $                N, H, LDH, WORK, -1 )
                    393: *
                    394: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
                    395: *
                    396:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
                    397: *
                    398: *        ==== Quick return in case of workspace query. ====
                    399: *
                    400:          IF( LWORK.EQ.-1 ) THEN
                    401:             WORK( 1 ) = DBLE( LWKOPT )
                    402:             RETURN
                    403:          END IF
                    404: *
                    405: *        ==== DLAHQR/DLAQR0 crossover point ====
                    406: *
                    407:          NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
                    408:          NMIN = MAX( NTINY, NMIN )
                    409: *
                    410: *        ==== Nibble crossover point ====
                    411: *
                    412:          NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
                    413:          NIBBLE = MAX( 0, NIBBLE )
                    414: *
                    415: *        ==== Accumulate reflections during ttswp?  Use block
                    416: *        .    2-by-2 structure during matrix-matrix multiply? ====
                    417: *
                    418:          KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
                    419:          KACC22 = MAX( 0, KACC22 )
                    420:          KACC22 = MIN( 2, KACC22 )
                    421: *
                    422: *        ==== NWMAX = the largest possible deflation window for
                    423: *        .    which there is sufficient workspace. ====
                    424: *
                    425:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
                    426:          NW = NWMAX
                    427: *
                    428: *        ==== NSMAX = the Largest number of simultaneous shifts
                    429: *        .    for which there is sufficient workspace. ====
                    430: *
1.19    ! bertrand  431:          NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
1.1       bertrand  432:          NSMAX = NSMAX - MOD( NSMAX, 2 )
                    433: *
                    434: *        ==== NDFL: an iteration count restarted at deflation. ====
                    435: *
                    436:          NDFL = 1
                    437: *
                    438: *        ==== ITMAX = iteration limit ====
                    439: *
                    440:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
                    441: *
                    442: *        ==== Last row and column in the active block ====
                    443: *
                    444:          KBOT = IHI
                    445: *
                    446: *        ==== Main Loop ====
                    447: *
                    448:          DO 80 IT = 1, ITMAX
                    449: *
                    450: *           ==== Done when KBOT falls below ILO ====
                    451: *
                    452:             IF( KBOT.LT.ILO )
                    453:      $         GO TO 90
                    454: *
                    455: *           ==== Locate active block ====
                    456: *
                    457:             DO 10 K = KBOT, ILO + 1, -1
                    458:                IF( H( K, K-1 ).EQ.ZERO )
                    459:      $            GO TO 20
                    460:    10       CONTINUE
                    461:             K = ILO
                    462:    20       CONTINUE
                    463:             KTOP = K
                    464: *
                    465: *           ==== Select deflation window size:
                    466: *           .    Typical Case:
                    467: *           .      If possible and advisable, nibble the entire
                    468: *           .      active block.  If not, use size MIN(NWR,NWMAX)
                    469: *           .      or MIN(NWR+1,NWMAX) depending upon which has
                    470: *           .      the smaller corresponding subdiagonal entry
                    471: *           .      (a heuristic).
                    472: *           .
                    473: *           .    Exceptional Case:
                    474: *           .      If there have been no deflations in KEXNW or
                    475: *           .      more iterations, then vary the deflation window
                    476: *           .      size.   At first, because, larger windows are,
                    477: *           .      in general, more powerful than smaller ones,
                    478: *           .      rapidly increase the window to the maximum possible.
                    479: *           .      Then, gradually reduce the window size. ====
                    480: *
                    481:             NH = KBOT - KTOP + 1
                    482:             NWUPBD = MIN( NH, NWMAX )
                    483:             IF( NDFL.LT.KEXNW ) THEN
                    484:                NW = MIN( NWUPBD, NWR )
                    485:             ELSE
                    486:                NW = MIN( NWUPBD, 2*NW )
                    487:             END IF
                    488:             IF( NW.LT.NWMAX ) THEN
                    489:                IF( NW.GE.NH-1 ) THEN
                    490:                   NW = NH
                    491:                ELSE
                    492:                   KWTOP = KBOT - NW + 1
                    493:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
                    494:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
                    495:                END IF
                    496:             END IF
                    497:             IF( NDFL.LT.KEXNW ) THEN
                    498:                NDEC = -1
                    499:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
                    500:                NDEC = NDEC + 1
                    501:                IF( NW-NDEC.LT.2 )
                    502:      $            NDEC = 0
                    503:                NW = NW - NDEC
                    504:             END IF
                    505: *
                    506: *           ==== Aggressive early deflation:
                    507: *           .    split workspace under the subdiagonal into
                    508: *           .      - an nw-by-nw work array V in the lower
                    509: *           .        left-hand-corner,
                    510: *           .      - an NW-by-at-least-NW-but-more-is-better
                    511: *           .        (NW-by-NHO) horizontal work array along
                    512: *           .        the bottom edge,
                    513: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
                    514: *           .        vertical work array along the left-hand-edge.
                    515: *           .        ====
                    516: *
                    517:             KV = N - NW + 1
                    518:             KT = NW + 1
                    519:             NHO = ( N-NW-1 ) - KT + 1
                    520:             KWV = NW + 2
                    521:             NVE = ( N-NW ) - KWV + 1
                    522: *
                    523: *           ==== Aggressive early deflation ====
                    524: *
                    525:             CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    526:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
                    527:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
                    528:      $                   WORK, LWORK )
                    529: *
                    530: *           ==== Adjust KBOT accounting for new deflations. ====
                    531: *
                    532:             KBOT = KBOT - LD
                    533: *
                    534: *           ==== KS points to the shifts. ====
                    535: *
                    536:             KS = KBOT - LS + 1
                    537: *
                    538: *           ==== Skip an expensive QR sweep if there is a (partly
                    539: *           .    heuristic) reason to expect that many eigenvalues
                    540: *           .    will deflate without it.  Here, the QR sweep is
                    541: *           .    skipped if many eigenvalues have just been deflated
                    542: *           .    or if the remaining active block is small.
                    543: *
                    544:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
                    545:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
                    546: *
                    547: *              ==== NS = nominal number of simultaneous shifts.
                    548: *              .    This may be lowered (slightly) if DLAQR2
                    549: *              .    did not provide that many shifts. ====
                    550: *
                    551:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
                    552:                NS = NS - MOD( NS, 2 )
                    553: *
                    554: *              ==== If there have been no deflations
                    555: *              .    in a multiple of KEXSH iterations,
                    556: *              .    then try exceptional shifts.
                    557: *              .    Otherwise use shifts provided by
                    558: *              .    DLAQR2 above or from the eigenvalues
                    559: *              .    of a trailing principal submatrix. ====
                    560: *
                    561:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                    562:                   KS = KBOT - NS + 1
                    563:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
                    564:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
                    565:                      AA = WILK1*SS + H( I, I )
                    566:                      BB = SS
                    567:                      CC = WILK2*SS
                    568:                      DD = AA
                    569:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
                    570:      $                            WR( I ), WI( I ), CS, SN )
                    571:    30             CONTINUE
                    572:                   IF( KS.EQ.KTOP ) THEN
                    573:                      WR( KS+1 ) = H( KS+1, KS+1 )
                    574:                      WI( KS+1 ) = ZERO
                    575:                      WR( KS ) = WR( KS+1 )
                    576:                      WI( KS ) = WI( KS+1 )
                    577:                   END IF
                    578:                ELSE
                    579: *
                    580: *                 ==== Got NS/2 or fewer shifts? Use DLAHQR
                    581: *                 .    on a trailing principal submatrix to
1.19    ! bertrand  582: *                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
1.1       bertrand  583: *                 .    there is enough space below the subdiagonal
                    584: *                 .    to fit an NS-by-NS scratch array.) ====
                    585: *
                    586:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
                    587:                      KS = KBOT - NS + 1
                    588:                      KT = N - NS + 1
                    589:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
                    590:      $                            H( KT, 1 ), LDH )
                    591:                      CALL DLAHQR( .false., .false., NS, 1, NS,
                    592:      $                            H( KT, 1 ), LDH, WR( KS ), WI( KS ),
                    593:      $                            1, 1, ZDUM, 1, INF )
                    594:                      KS = KS + INF
                    595: *
                    596: *                    ==== In case of a rare QR failure use
                    597: *                    .    eigenvalues of the trailing 2-by-2
                    598: *                    .    principal submatrix.  ====
                    599: *
                    600:                      IF( KS.GE.KBOT ) THEN
                    601:                         AA = H( KBOT-1, KBOT-1 )
                    602:                         CC = H( KBOT, KBOT-1 )
                    603:                         BB = H( KBOT-1, KBOT )
                    604:                         DD = H( KBOT, KBOT )
                    605:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
                    606:      $                               WI( KBOT-1 ), WR( KBOT ),
                    607:      $                               WI( KBOT ), CS, SN )
                    608:                         KS = KBOT - 1
                    609:                      END IF
                    610:                   END IF
                    611: *
                    612:                   IF( KBOT-KS+1.GT.NS ) THEN
                    613: *
                    614: *                    ==== Sort the shifts (Helps a little)
                    615: *                    .    Bubble sort keeps complex conjugate
                    616: *                    .    pairs together. ====
                    617: *
                    618:                      SORTED = .false.
                    619:                      DO 50 K = KBOT, KS + 1, -1
                    620:                         IF( SORTED )
                    621:      $                     GO TO 60
                    622:                         SORTED = .true.
                    623:                         DO 40 I = KS, K - 1
                    624:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
                    625:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
                    626:                               SORTED = .false.
                    627: *
                    628:                               SWAP = WR( I )
                    629:                               WR( I ) = WR( I+1 )
                    630:                               WR( I+1 ) = SWAP
                    631: *
                    632:                               SWAP = WI( I )
                    633:                               WI( I ) = WI( I+1 )
                    634:                               WI( I+1 ) = SWAP
                    635:                            END IF
                    636:    40                   CONTINUE
                    637:    50                CONTINUE
                    638:    60                CONTINUE
                    639:                   END IF
                    640: *
                    641: *                 ==== Shuffle shifts into pairs of real shifts
                    642: *                 .    and pairs of complex conjugate shifts
                    643: *                 .    assuming complex conjugate shifts are
                    644: *                 .    already adjacent to one another. (Yes,
                    645: *                 .    they are.)  ====
                    646: *
                    647:                   DO 70 I = KBOT, KS + 2, -2
                    648:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
                    649: *
                    650:                         SWAP = WR( I )
                    651:                         WR( I ) = WR( I-1 )
                    652:                         WR( I-1 ) = WR( I-2 )
                    653:                         WR( I-2 ) = SWAP
                    654: *
                    655:                         SWAP = WI( I )
                    656:                         WI( I ) = WI( I-1 )
                    657:                         WI( I-1 ) = WI( I-2 )
                    658:                         WI( I-2 ) = SWAP
                    659:                      END IF
                    660:    70             CONTINUE
                    661:                END IF
                    662: *
                    663: *              ==== If there are only two shifts and both are
                    664: *              .    real, then use only one.  ====
                    665: *
                    666:                IF( KBOT-KS+1.EQ.2 ) THEN
                    667:                   IF( WI( KBOT ).EQ.ZERO ) THEN
                    668:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
                    669:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
                    670:                         WR( KBOT-1 ) = WR( KBOT )
                    671:                      ELSE
                    672:                         WR( KBOT ) = WR( KBOT-1 )
                    673:                      END IF
                    674:                   END IF
                    675:                END IF
                    676: *
1.18      bertrand  677: *              ==== Use up to NS of the the smallest magnitude
1.1       bertrand  678: *              .    shifts.  If there aren't NS shifts available,
                    679: *              .    then use them all, possibly dropping one to
                    680: *              .    make the number of shifts even. ====
                    681: *
                    682:                NS = MIN( NS, KBOT-KS+1 )
                    683:                NS = NS - MOD( NS, 2 )
                    684:                KS = KBOT - NS + 1
                    685: *
                    686: *              ==== Small-bulge multi-shift QR sweep:
                    687: *              .    split workspace under the subdiagonal into
                    688: *              .    - a KDU-by-KDU work array U in the lower
                    689: *              .      left-hand-corner,
                    690: *              .    - a KDU-by-at-least-KDU-but-more-is-better
                    691: *              .      (KDU-by-NHo) horizontal work array WH along
                    692: *              .      the bottom edge,
                    693: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
                    694: *              .      (NVE-by-KDU) vertical work WV arrow along
                    695: *              .      the left-hand-edge. ====
                    696: *
1.19    ! bertrand  697:                KDU = 2*NS
1.1       bertrand  698:                KU = N - KDU + 1
                    699:                KWH = KDU + 1
                    700:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
                    701:                KWV = KDU + 4
                    702:                NVE = N - KDU - KWV + 1
                    703: *
                    704: *              ==== Small-bulge multi-shift QR sweep ====
                    705: *
                    706:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
                    707:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
                    708:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
                    709:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
                    710:             END IF
                    711: *
                    712: *           ==== Note progress (or the lack of it). ====
                    713: *
                    714:             IF( LD.GT.0 ) THEN
                    715:                NDFL = 1
                    716:             ELSE
                    717:                NDFL = NDFL + 1
                    718:             END IF
                    719: *
                    720: *           ==== End of main loop ====
                    721:    80    CONTINUE
                    722: *
                    723: *        ==== Iteration limit exceeded.  Set INFO to show where
                    724: *        .    the problem occurred and exit. ====
                    725: *
                    726:          INFO = KBOT
                    727:    90    CONTINUE
                    728:       END IF
                    729: *
                    730: *     ==== Return the optimal value of LWORK. ====
                    731: *
                    732:       WORK( 1 ) = DBLE( LWKOPT )
                    733: *
                    734: *     ==== End of DLAQR4 ====
                    735: *
                    736:       END

CVSweb interface <joel.bertrand@systella.fr>