File:  [local] / rpl / lapack / lapack / dlaqr3.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:00 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAQR3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
   22: *                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
   23: *                          LDT, NV, WV, LDWV, WORK, LWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
   32: *      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *>    Aggressive early deflation:
   43: *>
   44: *>    DLAQR3 accepts as input an upper Hessenberg matrix
   45: *>    H and performs an orthogonal similarity transformation
   46: *>    designed to detect and deflate fully converged eigenvalues from
   47: *>    a trailing principal submatrix.  On output H has been over-
   48: *>    written by a new Hessenberg matrix that is a perturbation of
   49: *>    an orthogonal similarity transformation of H.  It is to be
   50: *>    hoped that the final version of H has many zero subdiagonal
   51: *>    entries.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] WANTT
   58: *> \verbatim
   59: *>          WANTT is LOGICAL
   60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
   61: *>          so that the quasi-triangular Schur factor may be
   62: *>          computed (in cooperation with the calling subroutine).
   63: *>          If .FALSE., then only enough of H is updated to preserve
   64: *>          the eigenvalues.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] WANTZ
   68: *> \verbatim
   69: *>          WANTZ is LOGICAL
   70: *>          If .TRUE., then the orthogonal matrix Z is updated so
   71: *>          so that the orthogonal Schur factor may be computed
   72: *>          (in cooperation with the calling subroutine).
   73: *>          If .FALSE., then Z is not referenced.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
   80: *>          order of the orthogonal matrix Z.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] KTOP
   84: *> \verbatim
   85: *>          KTOP is INTEGER
   86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   87: *>          KBOT and KTOP together determine an isolated block
   88: *>          along the diagonal of the Hessenberg matrix.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] KBOT
   92: *> \verbatim
   93: *>          KBOT is INTEGER
   94: *>          It is assumed without a check that either
   95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   96: *>          determine an isolated block along the diagonal of the
   97: *>          Hessenberg matrix.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] NW
  101: *> \verbatim
  102: *>          NW is INTEGER
  103: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] H
  107: *> \verbatim
  108: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
  109: *>          On input the initial N-by-N section of H stores the
  110: *>          Hessenberg matrix undergoing aggressive early deflation.
  111: *>          On output H has been transformed by an orthogonal
  112: *>          similarity transformation, perturbed, and the returned
  113: *>          to Hessenberg form that (it is to be hoped) has some
  114: *>          zero subdiagonal entries.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDH
  118: *> \verbatim
  119: *>          LDH is INTEGER
  120: *>          Leading dimension of H just as declared in the calling
  121: *>          subroutine.  N <= LDH
  122: *> \endverbatim
  123: *>
  124: *> \param[in] ILOZ
  125: *> \verbatim
  126: *>          ILOZ is INTEGER
  127: *> \endverbatim
  128: *>
  129: *> \param[in] IHIZ
  130: *> \verbatim
  131: *>          IHIZ is INTEGER
  132: *>          Specify the rows of Z to which transformations must be
  133: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] Z
  137: *> \verbatim
  138: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
  139: *>          IF WANTZ is .TRUE., then on output, the orthogonal
  140: *>          similarity transformation mentioned above has been
  141: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  142: *>          If WANTZ is .FALSE., then Z is unreferenced.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDZ
  146: *> \verbatim
  147: *>          LDZ is INTEGER
  148: *>          The leading dimension of Z just as declared in the
  149: *>          calling subroutine.  1 <= LDZ.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] NS
  153: *> \verbatim
  154: *>          NS is INTEGER
  155: *>          The number of unconverged (ie approximate) eigenvalues
  156: *>          returned in SR and SI that may be used as shifts by the
  157: *>          calling subroutine.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ND
  161: *> \verbatim
  162: *>          ND is INTEGER
  163: *>          The number of converged eigenvalues uncovered by this
  164: *>          subroutine.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] SR
  168: *> \verbatim
  169: *>          SR is DOUBLE PRECISION array, dimension (KBOT)
  170: *> \endverbatim
  171: *>
  172: *> \param[out] SI
  173: *> \verbatim
  174: *>          SI is DOUBLE PRECISION array, dimension (KBOT)
  175: *>          On output, the real and imaginary parts of approximate
  176: *>          eigenvalues that may be used for shifts are stored in
  177: *>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
  178: *>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
  179: *>          The real and imaginary parts of converged eigenvalues
  180: *>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
  181: *>          SI(KBOT-ND+1) through SI(KBOT), respectively.
  182: *> \endverbatim
  183: *>
  184: *> \param[out] V
  185: *> \verbatim
  186: *>          V is DOUBLE PRECISION array, dimension (LDV,NW)
  187: *>          An NW-by-NW work array.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LDV
  191: *> \verbatim
  192: *>          LDV is INTEGER
  193: *>          The leading dimension of V just as declared in the
  194: *>          calling subroutine.  NW <= LDV
  195: *> \endverbatim
  196: *>
  197: *> \param[in] NH
  198: *> \verbatim
  199: *>          NH is INTEGER
  200: *>          The number of columns of T.  NH >= NW.
  201: *> \endverbatim
  202: *>
  203: *> \param[out] T
  204: *> \verbatim
  205: *>          T is DOUBLE PRECISION array, dimension (LDT,NW)
  206: *> \endverbatim
  207: *>
  208: *> \param[in] LDT
  209: *> \verbatim
  210: *>          LDT is INTEGER
  211: *>          The leading dimension of T just as declared in the
  212: *>          calling subroutine.  NW <= LDT
  213: *> \endverbatim
  214: *>
  215: *> \param[in] NV
  216: *> \verbatim
  217: *>          NV is INTEGER
  218: *>          The number of rows of work array WV available for
  219: *>          workspace.  NV >= NW.
  220: *> \endverbatim
  221: *>
  222: *> \param[out] WV
  223: *> \verbatim
  224: *>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
  225: *> \endverbatim
  226: *>
  227: *> \param[in] LDWV
  228: *> \verbatim
  229: *>          LDWV is INTEGER
  230: *>          The leading dimension of W just as declared in the
  231: *>          calling subroutine.  NW <= LDV
  232: *> \endverbatim
  233: *>
  234: *> \param[out] WORK
  235: *> \verbatim
  236: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  237: *>          On exit, WORK(1) is set to an estimate of the optimal value
  238: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
  239: *> \endverbatim
  240: *>
  241: *> \param[in] LWORK
  242: *> \verbatim
  243: *>          LWORK is INTEGER
  244: *>          The dimension of the work array WORK.  LWORK = 2*NW
  245: *>          suffices, but greater efficiency may result from larger
  246: *>          values of LWORK.
  247: *>
  248: *>          If LWORK = -1, then a workspace query is assumed; DLAQR3
  249: *>          only estimates the optimal workspace size for the given
  250: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
  251: *>          in WORK(1).  No error message related to LWORK is issued
  252: *>          by XERBLA.  Neither H nor Z are accessed.
  253: *> \endverbatim
  254: *
  255: *  Authors:
  256: *  ========
  257: *
  258: *> \author Univ. of Tennessee
  259: *> \author Univ. of California Berkeley
  260: *> \author Univ. of Colorado Denver
  261: *> \author NAG Ltd.
  262: *
  263: *> \date June 2016
  264: *
  265: *> \ingroup doubleOTHERauxiliary
  266: *
  267: *> \par Contributors:
  268: *  ==================
  269: *>
  270: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  271: *>       University of Kansas, USA
  272: *>
  273: *  =====================================================================
  274:       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  275:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
  276:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
  277: *
  278: *  -- LAPACK auxiliary routine (version 3.7.1) --
  279: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  280: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  281: *     June 2016
  282: *
  283: *     .. Scalar Arguments ..
  284:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  285:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
  286:       LOGICAL            WANTT, WANTZ
  287: *     ..
  288: *     .. Array Arguments ..
  289:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
  290:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
  291:      $                   Z( LDZ, * )
  292: *     ..
  293: *
  294: *  ================================================================
  295: *     .. Parameters ..
  296:       DOUBLE PRECISION   ZERO, ONE
  297:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  298: *     ..
  299: *     .. Local Scalars ..
  300:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
  301:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
  302:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
  303:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
  304:      $                   LWKOPT, NMIN
  305:       LOGICAL            BULGE, SORTED
  306: *     ..
  307: *     .. External Functions ..
  308:       DOUBLE PRECISION   DLAMCH
  309:       INTEGER            ILAENV
  310:       EXTERNAL           DLAMCH, ILAENV
  311: *     ..
  312: *     .. External Subroutines ..
  313:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
  314:      $                   DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR,
  315:      $                   DTREXC
  316: *     ..
  317: *     .. Intrinsic Functions ..
  318:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
  319: *     ..
  320: *     .. Executable Statements ..
  321: *
  322: *     ==== Estimate optimal workspace. ====
  323: *
  324:       JW = MIN( NW, KBOT-KTOP+1 )
  325:       IF( JW.LE.2 ) THEN
  326:          LWKOPT = 1
  327:       ELSE
  328: *
  329: *        ==== Workspace query call to DGEHRD ====
  330: *
  331:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  332:          LWK1 = INT( WORK( 1 ) )
  333: *
  334: *        ==== Workspace query call to DORMHR ====
  335: *
  336:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  337:      $                WORK, -1, INFO )
  338:          LWK2 = INT( WORK( 1 ) )
  339: *
  340: *        ==== Workspace query call to DLAQR4 ====
  341: *
  342:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
  343:      $                V, LDV, WORK, -1, INFQR )
  344:          LWK3 = INT( WORK( 1 ) )
  345: *
  346: *        ==== Optimal workspace ====
  347: *
  348:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
  349:       END IF
  350: *
  351: *     ==== Quick return in case of workspace query. ====
  352: *
  353:       IF( LWORK.EQ.-1 ) THEN
  354:          WORK( 1 ) = DBLE( LWKOPT )
  355:          RETURN
  356:       END IF
  357: *
  358: *     ==== Nothing to do ...
  359: *     ... for an empty active block ... ====
  360:       NS = 0
  361:       ND = 0
  362:       WORK( 1 ) = ONE
  363:       IF( KTOP.GT.KBOT )
  364:      $   RETURN
  365: *     ... nor for an empty deflation window. ====
  366:       IF( NW.LT.1 )
  367:      $   RETURN
  368: *
  369: *     ==== Machine constants ====
  370: *
  371:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  372:       SAFMAX = ONE / SAFMIN
  373:       CALL DLABAD( SAFMIN, SAFMAX )
  374:       ULP = DLAMCH( 'PRECISION' )
  375:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  376: *
  377: *     ==== Setup deflation window ====
  378: *
  379:       JW = MIN( NW, KBOT-KTOP+1 )
  380:       KWTOP = KBOT - JW + 1
  381:       IF( KWTOP.EQ.KTOP ) THEN
  382:          S = ZERO
  383:       ELSE
  384:          S = H( KWTOP, KWTOP-1 )
  385:       END IF
  386: *
  387:       IF( KBOT.EQ.KWTOP ) THEN
  388: *
  389: *        ==== 1-by-1 deflation window: not much to do ====
  390: *
  391:          SR( KWTOP ) = H( KWTOP, KWTOP )
  392:          SI( KWTOP ) = ZERO
  393:          NS = 1
  394:          ND = 0
  395:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
  396:      $        THEN
  397:             NS = 0
  398:             ND = 1
  399:             IF( KWTOP.GT.KTOP )
  400:      $         H( KWTOP, KWTOP-1 ) = ZERO
  401:          END IF
  402:          WORK( 1 ) = ONE
  403:          RETURN
  404:       END IF
  405: *
  406: *     ==== Convert to spike-triangular form.  (In case of a
  407: *     .    rare QR failure, this routine continues to do
  408: *     .    aggressive early deflation using that part of
  409: *     .    the deflation window that converged using INFQR
  410: *     .    here and there to keep track.) ====
  411: *
  412:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  413:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  414: *
  415:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  416:       NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
  417:       IF( JW.GT.NMIN ) THEN
  418:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
  419:      $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
  420:       ELSE
  421:          CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
  422:      $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
  423:       END IF
  424: *
  425: *     ==== DTREXC needs a clean margin near the diagonal ====
  426: *
  427:       DO 10 J = 1, JW - 3
  428:          T( J+2, J ) = ZERO
  429:          T( J+3, J ) = ZERO
  430:    10 CONTINUE
  431:       IF( JW.GT.2 )
  432:      $   T( JW, JW-2 ) = ZERO
  433: *
  434: *     ==== Deflation detection loop ====
  435: *
  436:       NS = JW
  437:       ILST = INFQR + 1
  438:    20 CONTINUE
  439:       IF( ILST.LE.NS ) THEN
  440:          IF( NS.EQ.1 ) THEN
  441:             BULGE = .FALSE.
  442:          ELSE
  443:             BULGE = T( NS, NS-1 ).NE.ZERO
  444:          END IF
  445: *
  446: *        ==== Small spike tip test for deflation ====
  447: *
  448:          IF( .NOT. BULGE ) THEN
  449: *
  450: *           ==== Real eigenvalue ====
  451: *
  452:             FOO = ABS( T( NS, NS ) )
  453:             IF( FOO.EQ.ZERO )
  454:      $         FOO = ABS( S )
  455:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
  456: *
  457: *              ==== Deflatable ====
  458: *
  459:                NS = NS - 1
  460:             ELSE
  461: *
  462: *              ==== Undeflatable.   Move it up out of the way.
  463: *              .    (DTREXC can not fail in this case.) ====
  464: *
  465:                IFST = NS
  466:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  467:      $                      INFO )
  468:                ILST = ILST + 1
  469:             END IF
  470:          ELSE
  471: *
  472: *           ==== Complex conjugate pair ====
  473: *
  474:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
  475:      $            SQRT( ABS( T( NS-1, NS ) ) )
  476:             IF( FOO.EQ.ZERO )
  477:      $         FOO = ABS( S )
  478:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
  479:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
  480: *
  481: *              ==== Deflatable ====
  482: *
  483:                NS = NS - 2
  484:             ELSE
  485: *
  486: *              ==== Undeflatable. Move them up out of the way.
  487: *              .    Fortunately, DTREXC does the right thing with
  488: *              .    ILST in case of a rare exchange failure. ====
  489: *
  490:                IFST = NS
  491:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  492:      $                      INFO )
  493:                ILST = ILST + 2
  494:             END IF
  495:          END IF
  496: *
  497: *        ==== End deflation detection loop ====
  498: *
  499:          GO TO 20
  500:       END IF
  501: *
  502: *        ==== Return to Hessenberg form ====
  503: *
  504:       IF( NS.EQ.0 )
  505:      $   S = ZERO
  506: *
  507:       IF( NS.LT.JW ) THEN
  508: *
  509: *        ==== sorting diagonal blocks of T improves accuracy for
  510: *        .    graded matrices.  Bubble sort deals well with
  511: *        .    exchange failures. ====
  512: *
  513:          SORTED = .false.
  514:          I = NS + 1
  515:    30    CONTINUE
  516:          IF( SORTED )
  517:      $      GO TO 50
  518:          SORTED = .true.
  519: *
  520:          KEND = I - 1
  521:          I = INFQR + 1
  522:          IF( I.EQ.NS ) THEN
  523:             K = I + 1
  524:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
  525:             K = I + 1
  526:          ELSE
  527:             K = I + 2
  528:          END IF
  529:    40    CONTINUE
  530:          IF( K.LE.KEND ) THEN
  531:             IF( K.EQ.I+1 ) THEN
  532:                EVI = ABS( T( I, I ) )
  533:             ELSE
  534:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
  535:      $               SQRT( ABS( T( I, I+1 ) ) )
  536:             END IF
  537: *
  538:             IF( K.EQ.KEND ) THEN
  539:                EVK = ABS( T( K, K ) )
  540:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
  541:                EVK = ABS( T( K, K ) )
  542:             ELSE
  543:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
  544:      $               SQRT( ABS( T( K, K+1 ) ) )
  545:             END IF
  546: *
  547:             IF( EVI.GE.EVK ) THEN
  548:                I = K
  549:             ELSE
  550:                SORTED = .false.
  551:                IFST = I
  552:                ILST = K
  553:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
  554:      $                      INFO )
  555:                IF( INFO.EQ.0 ) THEN
  556:                   I = ILST
  557:                ELSE
  558:                   I = K
  559:                END IF
  560:             END IF
  561:             IF( I.EQ.KEND ) THEN
  562:                K = I + 1
  563:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
  564:                K = I + 1
  565:             ELSE
  566:                K = I + 2
  567:             END IF
  568:             GO TO 40
  569:          END IF
  570:          GO TO 30
  571:    50    CONTINUE
  572:       END IF
  573: *
  574: *     ==== Restore shift/eigenvalue array from T ====
  575: *
  576:       I = JW
  577:    60 CONTINUE
  578:       IF( I.GE.INFQR+1 ) THEN
  579:          IF( I.EQ.INFQR+1 ) THEN
  580:             SR( KWTOP+I-1 ) = T( I, I )
  581:             SI( KWTOP+I-1 ) = ZERO
  582:             I = I - 1
  583:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
  584:             SR( KWTOP+I-1 ) = T( I, I )
  585:             SI( KWTOP+I-1 ) = ZERO
  586:             I = I - 1
  587:          ELSE
  588:             AA = T( I-1, I-1 )
  589:             CC = T( I, I-1 )
  590:             BB = T( I-1, I )
  591:             DD = T( I, I )
  592:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
  593:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
  594:      $                   SI( KWTOP+I-1 ), CS, SN )
  595:             I = I - 2
  596:          END IF
  597:          GO TO 60
  598:       END IF
  599: *
  600:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  601:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  602: *
  603: *           ==== Reflect spike back into lower triangle ====
  604: *
  605:             CALL DCOPY( NS, V, LDV, WORK, 1 )
  606:             BETA = WORK( 1 )
  607:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  608:             WORK( 1 ) = ONE
  609: *
  610:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  611: *
  612:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
  613:      $                  WORK( JW+1 ) )
  614:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  615:      $                  WORK( JW+1 ) )
  616:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  617:      $                  WORK( JW+1 ) )
  618: *
  619:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  620:      $                   LWORK-JW, INFO )
  621:          END IF
  622: *
  623: *        ==== Copy updated reduced window into place ====
  624: *
  625:          IF( KWTOP.GT.1 )
  626:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
  627:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  628:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  629:      $               LDH+1 )
  630: *
  631: *        ==== Accumulate orthogonal matrix in order update
  632: *        .    H and Z, if requested.  ====
  633: *
  634:          IF( NS.GT.1 .AND. S.NE.ZERO )
  635:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  636:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  637: *
  638: *        ==== Update vertical slab in H ====
  639: *
  640:          IF( WANTT ) THEN
  641:             LTOP = 1
  642:          ELSE
  643:             LTOP = KTOP
  644:          END IF
  645:          DO 70 KROW = LTOP, KWTOP - 1, NV
  646:             KLN = MIN( NV, KWTOP-KROW )
  647:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  648:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  649:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  650:    70    CONTINUE
  651: *
  652: *        ==== Update horizontal slab in H ====
  653: *
  654:          IF( WANTT ) THEN
  655:             DO 80 KCOL = KBOT + 1, N, NH
  656:                KLN = MIN( NH, N-KCOL+1 )
  657:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  658:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  659:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  660:      $                      LDH )
  661:    80       CONTINUE
  662:          END IF
  663: *
  664: *        ==== Update vertical slab in Z ====
  665: *
  666:          IF( WANTZ ) THEN
  667:             DO 90 KROW = ILOZ, IHIZ, NV
  668:                KLN = MIN( NV, IHIZ-KROW+1 )
  669:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  670:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  671:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  672:      $                      LDZ )
  673:    90       CONTINUE
  674:          END IF
  675:       END IF
  676: *
  677: *     ==== Return the number of deflations ... ====
  678: *
  679:       ND = JW - NS
  680: *
  681: *     ==== ... and the number of shifts. (Subtracting
  682: *     .    INFQR from the spike length takes care
  683: *     .    of the case of a rare QR failure while
  684: *     .    calculating eigenvalues of the deflation
  685: *     .    window.)  ====
  686: *
  687:       NS = NS - INFQR
  688: *
  689: *      ==== Return optimal workspace. ====
  690: *
  691:       WORK( 1 ) = DBLE( LWKOPT )
  692: *
  693: *     ==== End of DLAQR3 ====
  694: *
  695:       END

CVSweb interface <joel.bertrand@systella.fr>