Annotation of rpl/lapack/lapack/dlaqr3.f, revision 1.22

1.12      bertrand    1: *> \brief \b DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DLAQR3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr3.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                     22: *                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                     23: *                          LDT, NV, WV, LDWV, WORK, LWORK )
1.17      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     28: *       LOGICAL            WANTT, WANTZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                     32: *      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                     33: *      $                   Z( LDZ, * )
                     34: *       ..
1.17      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *>    Aggressive early deflation:
                     43: *>
                     44: *>    DLAQR3 accepts as input an upper Hessenberg matrix
                     45: *>    H and performs an orthogonal similarity transformation
                     46: *>    designed to detect and deflate fully converged eigenvalues from
                     47: *>    a trailing principal submatrix.  On output H has been over-
                     48: *>    written by a new Hessenberg matrix that is a perturbation of
                     49: *>    an orthogonal similarity transformation of H.  It is to be
                     50: *>    hoped that the final version of H has many zero subdiagonal
                     51: *>    entries.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] WANTT
                     58: *> \verbatim
                     59: *>          WANTT is LOGICAL
                     60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
                     61: *>          so that the quasi-triangular Schur factor may be
                     62: *>          computed (in cooperation with the calling subroutine).
                     63: *>          If .FALSE., then only enough of H is updated to preserve
                     64: *>          the eigenvalues.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] WANTZ
                     68: *> \verbatim
                     69: *>          WANTZ is LOGICAL
                     70: *>          If .TRUE., then the orthogonal matrix Z is updated so
                     71: *>          so that the orthogonal Schur factor may be computed
                     72: *>          (in cooperation with the calling subroutine).
                     73: *>          If .FALSE., then Z is not referenced.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
                     80: *>          order of the orthogonal matrix Z.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KTOP
                     84: *> \verbatim
                     85: *>          KTOP is INTEGER
                     86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     87: *>          KBOT and KTOP together determine an isolated block
                     88: *>          along the diagonal of the Hessenberg matrix.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] KBOT
                     92: *> \verbatim
                     93: *>          KBOT is INTEGER
                     94: *>          It is assumed without a check that either
                     95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     96: *>          determine an isolated block along the diagonal of the
                     97: *>          Hessenberg matrix.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] NW
                    101: *> \verbatim
                    102: *>          NW is INTEGER
1.21      bertrand  103: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
1.9       bertrand  104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] H
                    107: *> \verbatim
                    108: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                    109: *>          On input the initial N-by-N section of H stores the
                    110: *>          Hessenberg matrix undergoing aggressive early deflation.
                    111: *>          On output H has been transformed by an orthogonal
                    112: *>          similarity transformation, perturbed, and the returned
                    113: *>          to Hessenberg form that (it is to be hoped) has some
                    114: *>          zero subdiagonal entries.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDH
                    118: *> \verbatim
1.19      bertrand  119: *>          LDH is INTEGER
1.9       bertrand  120: *>          Leading dimension of H just as declared in the calling
1.21      bertrand  121: *>          subroutine.  N <= LDH
1.9       bertrand  122: *> \endverbatim
                    123: *>
                    124: *> \param[in] ILOZ
                    125: *> \verbatim
                    126: *>          ILOZ is INTEGER
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] IHIZ
                    130: *> \verbatim
                    131: *>          IHIZ is INTEGER
                    132: *>          Specify the rows of Z to which transformations must be
1.21      bertrand  133: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
1.9       bertrand  134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] Z
                    137: *> \verbatim
                    138: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    139: *>          IF WANTZ is .TRUE., then on output, the orthogonal
                    140: *>          similarity transformation mentioned above has been
1.15      bertrand  141: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
1.9       bertrand  142: *>          If WANTZ is .FALSE., then Z is unreferenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDZ
                    146: *> \verbatim
1.19      bertrand  147: *>          LDZ is INTEGER
1.9       bertrand  148: *>          The leading dimension of Z just as declared in the
1.21      bertrand  149: *>          calling subroutine.  1 <= LDZ.
1.9       bertrand  150: *> \endverbatim
                    151: *>
                    152: *> \param[out] NS
                    153: *> \verbatim
1.19      bertrand  154: *>          NS is INTEGER
1.9       bertrand  155: *>          The number of unconverged (ie approximate) eigenvalues
                    156: *>          returned in SR and SI that may be used as shifts by the
                    157: *>          calling subroutine.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] ND
                    161: *> \verbatim
1.19      bertrand  162: *>          ND is INTEGER
1.9       bertrand  163: *>          The number of converged eigenvalues uncovered by this
                    164: *>          subroutine.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] SR
                    168: *> \verbatim
                    169: *>          SR is DOUBLE PRECISION array, dimension (KBOT)
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] SI
                    173: *> \verbatim
                    174: *>          SI is DOUBLE PRECISION array, dimension (KBOT)
                    175: *>          On output, the real and imaginary parts of approximate
                    176: *>          eigenvalues that may be used for shifts are stored in
                    177: *>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
                    178: *>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
                    179: *>          The real and imaginary parts of converged eigenvalues
                    180: *>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
                    181: *>          SI(KBOT-ND+1) through SI(KBOT), respectively.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] V
                    185: *> \verbatim
                    186: *>          V is DOUBLE PRECISION array, dimension (LDV,NW)
                    187: *>          An NW-by-NW work array.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] LDV
                    191: *> \verbatim
1.19      bertrand  192: *>          LDV is INTEGER
1.9       bertrand  193: *>          The leading dimension of V just as declared in the
1.21      bertrand  194: *>          calling subroutine.  NW <= LDV
1.9       bertrand  195: *> \endverbatim
                    196: *>
                    197: *> \param[in] NH
                    198: *> \verbatim
1.19      bertrand  199: *>          NH is INTEGER
1.21      bertrand  200: *>          The number of columns of T.  NH >= NW.
1.9       bertrand  201: *> \endverbatim
                    202: *>
                    203: *> \param[out] T
                    204: *> \verbatim
                    205: *>          T is DOUBLE PRECISION array, dimension (LDT,NW)
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[in] LDT
                    209: *> \verbatim
1.19      bertrand  210: *>          LDT is INTEGER
1.9       bertrand  211: *>          The leading dimension of T just as declared in the
1.21      bertrand  212: *>          calling subroutine.  NW <= LDT
1.9       bertrand  213: *> \endverbatim
                    214: *>
                    215: *> \param[in] NV
                    216: *> \verbatim
1.19      bertrand  217: *>          NV is INTEGER
1.9       bertrand  218: *>          The number of rows of work array WV available for
1.21      bertrand  219: *>          workspace.  NV >= NW.
1.9       bertrand  220: *> \endverbatim
                    221: *>
                    222: *> \param[out] WV
                    223: *> \verbatim
                    224: *>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[in] LDWV
                    228: *> \verbatim
1.19      bertrand  229: *>          LDWV is INTEGER
1.9       bertrand  230: *>          The leading dimension of W just as declared in the
1.21      bertrand  231: *>          calling subroutine.  NW <= LDV
1.9       bertrand  232: *> \endverbatim
                    233: *>
                    234: *> \param[out] WORK
                    235: *> \verbatim
                    236: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    237: *>          On exit, WORK(1) is set to an estimate of the optimal value
                    238: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[in] LWORK
                    242: *> \verbatim
1.19      bertrand  243: *>          LWORK is INTEGER
1.9       bertrand  244: *>          The dimension of the work array WORK.  LWORK = 2*NW
                    245: *>          suffices, but greater efficiency may result from larger
                    246: *>          values of LWORK.
                    247: *>
                    248: *>          If LWORK = -1, then a workspace query is assumed; DLAQR3
                    249: *>          only estimates the optimal workspace size for the given
                    250: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
                    251: *>          in WORK(1).  No error message related to LWORK is issued
                    252: *>          by XERBLA.  Neither H nor Z are accessed.
                    253: *> \endverbatim
                    254: *
                    255: *  Authors:
                    256: *  ========
                    257: *
1.17      bertrand  258: *> \author Univ. of Tennessee
                    259: *> \author Univ. of California Berkeley
                    260: *> \author Univ. of Colorado Denver
                    261: *> \author NAG Ltd.
1.9       bertrand  262: *
                    263: *> \ingroup doubleOTHERauxiliary
                    264: *
                    265: *> \par Contributors:
                    266: *  ==================
                    267: *>
                    268: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    269: *>       University of Kansas, USA
                    270: *>
                    271: *  =====================================================================
1.1       bertrand  272:       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    273:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                    274:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                    275: *
1.22    ! bertrand  276: *  -- LAPACK auxiliary routine --
1.9       bertrand  277: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    278: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  279: *
                    280: *     .. Scalar Arguments ..
                    281:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    282:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    283:       LOGICAL            WANTT, WANTZ
                    284: *     ..
                    285: *     .. Array Arguments ..
                    286:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                    287:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                    288:      $                   Z( LDZ, * )
                    289: *     ..
                    290: *
1.9       bertrand  291: *  ================================================================
1.1       bertrand  292: *     .. Parameters ..
                    293:       DOUBLE PRECISION   ZERO, ONE
                    294:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    295: *     ..
                    296: *     .. Local Scalars ..
                    297:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    298:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    299:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    300:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
                    301:      $                   LWKOPT, NMIN
                    302:       LOGICAL            BULGE, SORTED
                    303: *     ..
                    304: *     .. External Functions ..
                    305:       DOUBLE PRECISION   DLAMCH
                    306:       INTEGER            ILAENV
                    307:       EXTERNAL           DLAMCH, ILAENV
                    308: *     ..
                    309: *     .. External Subroutines ..
                    310:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    311:      $                   DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR,
                    312:      $                   DTREXC
                    313: *     ..
                    314: *     .. Intrinsic Functions ..
                    315:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    316: *     ..
                    317: *     .. Executable Statements ..
                    318: *
                    319: *     ==== Estimate optimal workspace. ====
                    320: *
                    321:       JW = MIN( NW, KBOT-KTOP+1 )
                    322:       IF( JW.LE.2 ) THEN
                    323:          LWKOPT = 1
                    324:       ELSE
                    325: *
                    326: *        ==== Workspace query call to DGEHRD ====
                    327: *
                    328:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    329:          LWK1 = INT( WORK( 1 ) )
                    330: *
                    331: *        ==== Workspace query call to DORMHR ====
                    332: *
                    333:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    334:      $                WORK, -1, INFO )
                    335:          LWK2 = INT( WORK( 1 ) )
                    336: *
                    337: *        ==== Workspace query call to DLAQR4 ====
                    338: *
                    339:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
                    340:      $                V, LDV, WORK, -1, INFQR )
                    341:          LWK3 = INT( WORK( 1 ) )
                    342: *
                    343: *        ==== Optimal workspace ====
                    344: *
                    345:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
                    346:       END IF
                    347: *
                    348: *     ==== Quick return in case of workspace query. ====
                    349: *
                    350:       IF( LWORK.EQ.-1 ) THEN
                    351:          WORK( 1 ) = DBLE( LWKOPT )
                    352:          RETURN
                    353:       END IF
                    354: *
                    355: *     ==== Nothing to do ...
                    356: *     ... for an empty active block ... ====
                    357:       NS = 0
                    358:       ND = 0
                    359:       WORK( 1 ) = ONE
                    360:       IF( KTOP.GT.KBOT )
                    361:      $   RETURN
                    362: *     ... nor for an empty deflation window. ====
                    363:       IF( NW.LT.1 )
                    364:      $   RETURN
                    365: *
                    366: *     ==== Machine constants ====
                    367: *
                    368:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    369:       SAFMAX = ONE / SAFMIN
                    370:       CALL DLABAD( SAFMIN, SAFMAX )
                    371:       ULP = DLAMCH( 'PRECISION' )
                    372:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    373: *
                    374: *     ==== Setup deflation window ====
                    375: *
                    376:       JW = MIN( NW, KBOT-KTOP+1 )
                    377:       KWTOP = KBOT - JW + 1
                    378:       IF( KWTOP.EQ.KTOP ) THEN
                    379:          S = ZERO
                    380:       ELSE
                    381:          S = H( KWTOP, KWTOP-1 )
                    382:       END IF
                    383: *
                    384:       IF( KBOT.EQ.KWTOP ) THEN
                    385: *
                    386: *        ==== 1-by-1 deflation window: not much to do ====
                    387: *
                    388:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    389:          SI( KWTOP ) = ZERO
                    390:          NS = 1
                    391:          ND = 0
                    392:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    393:      $        THEN
                    394:             NS = 0
                    395:             ND = 1
                    396:             IF( KWTOP.GT.KTOP )
                    397:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    398:          END IF
                    399:          WORK( 1 ) = ONE
                    400:          RETURN
                    401:       END IF
                    402: *
                    403: *     ==== Convert to spike-triangular form.  (In case of a
                    404: *     .    rare QR failure, this routine continues to do
                    405: *     .    aggressive early deflation using that part of
                    406: *     .    the deflation window that converged using INFQR
                    407: *     .    here and there to keep track.) ====
                    408: *
                    409:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    410:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    411: *
                    412:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    413:       NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
                    414:       IF( JW.GT.NMIN ) THEN
                    415:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    416:      $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
                    417:       ELSE
                    418:          CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    419:      $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    420:       END IF
                    421: *
                    422: *     ==== DTREXC needs a clean margin near the diagonal ====
                    423: *
                    424:       DO 10 J = 1, JW - 3
                    425:          T( J+2, J ) = ZERO
                    426:          T( J+3, J ) = ZERO
                    427:    10 CONTINUE
                    428:       IF( JW.GT.2 )
                    429:      $   T( JW, JW-2 ) = ZERO
                    430: *
                    431: *     ==== Deflation detection loop ====
                    432: *
                    433:       NS = JW
                    434:       ILST = INFQR + 1
                    435:    20 CONTINUE
                    436:       IF( ILST.LE.NS ) THEN
                    437:          IF( NS.EQ.1 ) THEN
                    438:             BULGE = .FALSE.
                    439:          ELSE
                    440:             BULGE = T( NS, NS-1 ).NE.ZERO
                    441:          END IF
                    442: *
                    443: *        ==== Small spike tip test for deflation ====
                    444: *
1.9       bertrand  445:          IF( .NOT. BULGE ) THEN
1.1       bertrand  446: *
                    447: *           ==== Real eigenvalue ====
                    448: *
                    449:             FOO = ABS( T( NS, NS ) )
                    450:             IF( FOO.EQ.ZERO )
                    451:      $         FOO = ABS( S )
                    452:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    453: *
                    454: *              ==== Deflatable ====
                    455: *
                    456:                NS = NS - 1
                    457:             ELSE
                    458: *
                    459: *              ==== Undeflatable.   Move it up out of the way.
                    460: *              .    (DTREXC can not fail in this case.) ====
                    461: *
                    462:                IFST = NS
                    463:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    464:      $                      INFO )
                    465:                ILST = ILST + 1
                    466:             END IF
                    467:          ELSE
                    468: *
                    469: *           ==== Complex conjugate pair ====
                    470: *
                    471:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    472:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    473:             IF( FOO.EQ.ZERO )
                    474:      $         FOO = ABS( S )
                    475:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    476:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    477: *
                    478: *              ==== Deflatable ====
                    479: *
                    480:                NS = NS - 2
                    481:             ELSE
                    482: *
                    483: *              ==== Undeflatable. Move them up out of the way.
                    484: *              .    Fortunately, DTREXC does the right thing with
                    485: *              .    ILST in case of a rare exchange failure. ====
                    486: *
                    487:                IFST = NS
                    488:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    489:      $                      INFO )
                    490:                ILST = ILST + 2
                    491:             END IF
                    492:          END IF
                    493: *
                    494: *        ==== End deflation detection loop ====
                    495: *
                    496:          GO TO 20
                    497:       END IF
                    498: *
                    499: *        ==== Return to Hessenberg form ====
                    500: *
                    501:       IF( NS.EQ.0 )
                    502:      $   S = ZERO
                    503: *
                    504:       IF( NS.LT.JW ) THEN
                    505: *
                    506: *        ==== sorting diagonal blocks of T improves accuracy for
                    507: *        .    graded matrices.  Bubble sort deals well with
                    508: *        .    exchange failures. ====
                    509: *
                    510:          SORTED = .false.
                    511:          I = NS + 1
                    512:    30    CONTINUE
                    513:          IF( SORTED )
                    514:      $      GO TO 50
                    515:          SORTED = .true.
                    516: *
                    517:          KEND = I - 1
                    518:          I = INFQR + 1
                    519:          IF( I.EQ.NS ) THEN
                    520:             K = I + 1
                    521:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    522:             K = I + 1
                    523:          ELSE
                    524:             K = I + 2
                    525:          END IF
                    526:    40    CONTINUE
                    527:          IF( K.LE.KEND ) THEN
                    528:             IF( K.EQ.I+1 ) THEN
                    529:                EVI = ABS( T( I, I ) )
                    530:             ELSE
                    531:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    532:      $               SQRT( ABS( T( I, I+1 ) ) )
                    533:             END IF
                    534: *
                    535:             IF( K.EQ.KEND ) THEN
                    536:                EVK = ABS( T( K, K ) )
                    537:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    538:                EVK = ABS( T( K, K ) )
                    539:             ELSE
                    540:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    541:      $               SQRT( ABS( T( K, K+1 ) ) )
                    542:             END IF
                    543: *
                    544:             IF( EVI.GE.EVK ) THEN
                    545:                I = K
                    546:             ELSE
                    547:                SORTED = .false.
                    548:                IFST = I
                    549:                ILST = K
                    550:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    551:      $                      INFO )
                    552:                IF( INFO.EQ.0 ) THEN
                    553:                   I = ILST
                    554:                ELSE
                    555:                   I = K
                    556:                END IF
                    557:             END IF
                    558:             IF( I.EQ.KEND ) THEN
                    559:                K = I + 1
                    560:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    561:                K = I + 1
                    562:             ELSE
                    563:                K = I + 2
                    564:             END IF
                    565:             GO TO 40
                    566:          END IF
                    567:          GO TO 30
                    568:    50    CONTINUE
                    569:       END IF
                    570: *
                    571: *     ==== Restore shift/eigenvalue array from T ====
                    572: *
                    573:       I = JW
                    574:    60 CONTINUE
                    575:       IF( I.GE.INFQR+1 ) THEN
                    576:          IF( I.EQ.INFQR+1 ) THEN
                    577:             SR( KWTOP+I-1 ) = T( I, I )
                    578:             SI( KWTOP+I-1 ) = ZERO
                    579:             I = I - 1
                    580:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    581:             SR( KWTOP+I-1 ) = T( I, I )
                    582:             SI( KWTOP+I-1 ) = ZERO
                    583:             I = I - 1
                    584:          ELSE
                    585:             AA = T( I-1, I-1 )
                    586:             CC = T( I, I-1 )
                    587:             BB = T( I-1, I )
                    588:             DD = T( I, I )
                    589:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    590:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    591:      $                   SI( KWTOP+I-1 ), CS, SN )
                    592:             I = I - 2
                    593:          END IF
                    594:          GO TO 60
                    595:       END IF
                    596: *
                    597:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    598:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    599: *
                    600: *           ==== Reflect spike back into lower triangle ====
                    601: *
                    602:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    603:             BETA = WORK( 1 )
                    604:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    605:             WORK( 1 ) = ONE
                    606: *
                    607:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    608: *
                    609:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    610:      $                  WORK( JW+1 ) )
                    611:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    612:      $                  WORK( JW+1 ) )
                    613:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    614:      $                  WORK( JW+1 ) )
                    615: *
                    616:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    617:      $                   LWORK-JW, INFO )
                    618:          END IF
                    619: *
                    620: *        ==== Copy updated reduced window into place ====
                    621: *
                    622:          IF( KWTOP.GT.1 )
                    623:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    624:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    625:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    626:      $               LDH+1 )
                    627: *
                    628: *        ==== Accumulate orthogonal matrix in order update
                    629: *        .    H and Z, if requested.  ====
                    630: *
                    631:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    632:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    633:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    634: *
                    635: *        ==== Update vertical slab in H ====
                    636: *
                    637:          IF( WANTT ) THEN
                    638:             LTOP = 1
                    639:          ELSE
                    640:             LTOP = KTOP
                    641:          END IF
                    642:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    643:             KLN = MIN( NV, KWTOP-KROW )
                    644:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    645:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    646:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    647:    70    CONTINUE
                    648: *
                    649: *        ==== Update horizontal slab in H ====
                    650: *
                    651:          IF( WANTT ) THEN
                    652:             DO 80 KCOL = KBOT + 1, N, NH
                    653:                KLN = MIN( NH, N-KCOL+1 )
                    654:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    655:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    656:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    657:      $                      LDH )
                    658:    80       CONTINUE
                    659:          END IF
                    660: *
                    661: *        ==== Update vertical slab in Z ====
                    662: *
                    663:          IF( WANTZ ) THEN
                    664:             DO 90 KROW = ILOZ, IHIZ, NV
                    665:                KLN = MIN( NV, IHIZ-KROW+1 )
                    666:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    667:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    668:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    669:      $                      LDZ )
                    670:    90       CONTINUE
                    671:          END IF
                    672:       END IF
                    673: *
                    674: *     ==== Return the number of deflations ... ====
                    675: *
                    676:       ND = JW - NS
                    677: *
                    678: *     ==== ... and the number of shifts. (Subtracting
                    679: *     .    INFQR from the spike length takes care
                    680: *     .    of the case of a rare QR failure while
                    681: *     .    calculating eigenvalues of the deflation
                    682: *     .    window.)  ====
                    683: *
                    684:       NS = NS - INFQR
                    685: *
                    686: *      ==== Return optimal workspace. ====
                    687: *
                    688:       WORK( 1 ) = DBLE( LWKOPT )
                    689: *
                    690: *     ==== End of DLAQR3 ====
                    691: *
                    692:       END

CVSweb interface <joel.bertrand@systella.fr>