Annotation of rpl/lapack/lapack/dlaqr3.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                      2:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                      3:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                      4: *
                      5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
                      6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
                      7: *  -- April 2009                                                      --
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     12:       LOGICAL            WANTT, WANTZ
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                     16:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                     17:      $                   Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *     ******************************************************************
                     21: *     Aggressive early deflation:
                     22: *
                     23: *     This subroutine accepts as input an upper Hessenberg matrix
                     24: *     H and performs an orthogonal similarity transformation
                     25: *     designed to detect and deflate fully converged eigenvalues from
                     26: *     a trailing principal submatrix.  On output H has been over-
                     27: *     written by a new Hessenberg matrix that is a perturbation of
                     28: *     an orthogonal similarity transformation of H.  It is to be
                     29: *     hoped that the final version of H has many zero subdiagonal
                     30: *     entries.
                     31: *
                     32: *     ******************************************************************
                     33: *     WANTT   (input) LOGICAL
                     34: *          If .TRUE., then the Hessenberg matrix H is fully updated
                     35: *          so that the quasi-triangular Schur factor may be
                     36: *          computed (in cooperation with the calling subroutine).
                     37: *          If .FALSE., then only enough of H is updated to preserve
                     38: *          the eigenvalues.
                     39: *
                     40: *     WANTZ   (input) LOGICAL
                     41: *          If .TRUE., then the orthogonal matrix Z is updated so
                     42: *          so that the orthogonal Schur factor may be computed
                     43: *          (in cooperation with the calling subroutine).
                     44: *          If .FALSE., then Z is not referenced.
                     45: *
                     46: *     N       (input) INTEGER
                     47: *          The order of the matrix H and (if WANTZ is .TRUE.) the
                     48: *          order of the orthogonal matrix Z.
                     49: *
                     50: *     KTOP    (input) INTEGER
                     51: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     52: *          KBOT and KTOP together determine an isolated block
                     53: *          along the diagonal of the Hessenberg matrix.
                     54: *
                     55: *     KBOT    (input) INTEGER
                     56: *          It is assumed without a check that either
                     57: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     58: *          determine an isolated block along the diagonal of the
                     59: *          Hessenberg matrix.
                     60: *
                     61: *     NW      (input) INTEGER
                     62: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
                     63: *
                     64: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
                     65: *          On input the initial N-by-N section of H stores the
                     66: *          Hessenberg matrix undergoing aggressive early deflation.
                     67: *          On output H has been transformed by an orthogonal
                     68: *          similarity transformation, perturbed, and the returned
                     69: *          to Hessenberg form that (it is to be hoped) has some
                     70: *          zero subdiagonal entries.
                     71: *
                     72: *     LDH     (input) integer
                     73: *          Leading dimension of H just as declared in the calling
                     74: *          subroutine.  N .LE. LDH
                     75: *
                     76: *     ILOZ    (input) INTEGER
                     77: *     IHIZ    (input) INTEGER
                     78: *          Specify the rows of Z to which transformations must be
                     79: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
                     80: *
                     81: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
                     82: *          IF WANTZ is .TRUE., then on output, the orthogonal
                     83: *          similarity transformation mentioned above has been
                     84: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
                     85: *          If WANTZ is .FALSE., then Z is unreferenced.
                     86: *
                     87: *     LDZ     (input) integer
                     88: *          The leading dimension of Z just as declared in the
                     89: *          calling subroutine.  1 .LE. LDZ.
                     90: *
                     91: *     NS      (output) integer
                     92: *          The number of unconverged (ie approximate) eigenvalues
                     93: *          returned in SR and SI that may be used as shifts by the
                     94: *          calling subroutine.
                     95: *
                     96: *     ND      (output) integer
                     97: *          The number of converged eigenvalues uncovered by this
                     98: *          subroutine.
                     99: *
                    100: *     SR      (output) DOUBLE PRECISION array, dimension KBOT
                    101: *     SI      (output) DOUBLE PRECISION array, dimension KBOT
                    102: *          On output, the real and imaginary parts of approximate
                    103: *          eigenvalues that may be used for shifts are stored in
                    104: *          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
                    105: *          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
                    106: *          The real and imaginary parts of converged eigenvalues
                    107: *          are stored in SR(KBOT-ND+1) through SR(KBOT) and
                    108: *          SI(KBOT-ND+1) through SI(KBOT), respectively.
                    109: *
                    110: *     V       (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
                    111: *          An NW-by-NW work array.
                    112: *
                    113: *     LDV     (input) integer scalar
                    114: *          The leading dimension of V just as declared in the
                    115: *          calling subroutine.  NW .LE. LDV
                    116: *
                    117: *     NH      (input) integer scalar
                    118: *          The number of columns of T.  NH.GE.NW.
                    119: *
                    120: *     T       (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
                    121: *
                    122: *     LDT     (input) integer
                    123: *          The leading dimension of T just as declared in the
                    124: *          calling subroutine.  NW .LE. LDT
                    125: *
                    126: *     NV      (input) integer
                    127: *          The number of rows of work array WV available for
                    128: *          workspace.  NV.GE.NW.
                    129: *
                    130: *     WV      (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
                    131: *
                    132: *     LDWV    (input) integer
                    133: *          The leading dimension of W just as declared in the
                    134: *          calling subroutine.  NW .LE. LDV
                    135: *
                    136: *     WORK    (workspace) DOUBLE PRECISION array, dimension LWORK.
                    137: *          On exit, WORK(1) is set to an estimate of the optimal value
                    138: *          of LWORK for the given values of N, NW, KTOP and KBOT.
                    139: *
                    140: *     LWORK   (input) integer
                    141: *          The dimension of the work array WORK.  LWORK = 2*NW
                    142: *          suffices, but greater efficiency may result from larger
                    143: *          values of LWORK.
                    144: *
                    145: *          If LWORK = -1, then a workspace query is assumed; DLAQR3
                    146: *          only estimates the optimal workspace size for the given
                    147: *          values of N, NW, KTOP and KBOT.  The estimate is returned
                    148: *          in WORK(1).  No error message related to LWORK is issued
                    149: *          by XERBLA.  Neither H nor Z are accessed.
                    150: *
                    151: *     ================================================================
                    152: *     Based on contributions by
                    153: *        Karen Braman and Ralph Byers, Department of Mathematics,
                    154: *        University of Kansas, USA
                    155: *
                    156: *     ================================================================
                    157: *     .. Parameters ..
                    158:       DOUBLE PRECISION   ZERO, ONE
                    159:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    160: *     ..
                    161: *     .. Local Scalars ..
                    162:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    163:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    164:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    165:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
                    166:      $                   LWKOPT, NMIN
                    167:       LOGICAL            BULGE, SORTED
                    168: *     ..
                    169: *     .. External Functions ..
                    170:       DOUBLE PRECISION   DLAMCH
                    171:       INTEGER            ILAENV
                    172:       EXTERNAL           DLAMCH, ILAENV
                    173: *     ..
                    174: *     .. External Subroutines ..
                    175:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    176:      $                   DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR,
                    177:      $                   DTREXC
                    178: *     ..
                    179: *     .. Intrinsic Functions ..
                    180:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    181: *     ..
                    182: *     .. Executable Statements ..
                    183: *
                    184: *     ==== Estimate optimal workspace. ====
                    185: *
                    186:       JW = MIN( NW, KBOT-KTOP+1 )
                    187:       IF( JW.LE.2 ) THEN
                    188:          LWKOPT = 1
                    189:       ELSE
                    190: *
                    191: *        ==== Workspace query call to DGEHRD ====
                    192: *
                    193:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    194:          LWK1 = INT( WORK( 1 ) )
                    195: *
                    196: *        ==== Workspace query call to DORMHR ====
                    197: *
                    198:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    199:      $                WORK, -1, INFO )
                    200:          LWK2 = INT( WORK( 1 ) )
                    201: *
                    202: *        ==== Workspace query call to DLAQR4 ====
                    203: *
                    204:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
                    205:      $                V, LDV, WORK, -1, INFQR )
                    206:          LWK3 = INT( WORK( 1 ) )
                    207: *
                    208: *        ==== Optimal workspace ====
                    209: *
                    210:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
                    211:       END IF
                    212: *
                    213: *     ==== Quick return in case of workspace query. ====
                    214: *
                    215:       IF( LWORK.EQ.-1 ) THEN
                    216:          WORK( 1 ) = DBLE( LWKOPT )
                    217:          RETURN
                    218:       END IF
                    219: *
                    220: *     ==== Nothing to do ...
                    221: *     ... for an empty active block ... ====
                    222:       NS = 0
                    223:       ND = 0
                    224:       WORK( 1 ) = ONE
                    225:       IF( KTOP.GT.KBOT )
                    226:      $   RETURN
                    227: *     ... nor for an empty deflation window. ====
                    228:       IF( NW.LT.1 )
                    229:      $   RETURN
                    230: *
                    231: *     ==== Machine constants ====
                    232: *
                    233:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    234:       SAFMAX = ONE / SAFMIN
                    235:       CALL DLABAD( SAFMIN, SAFMAX )
                    236:       ULP = DLAMCH( 'PRECISION' )
                    237:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    238: *
                    239: *     ==== Setup deflation window ====
                    240: *
                    241:       JW = MIN( NW, KBOT-KTOP+1 )
                    242:       KWTOP = KBOT - JW + 1
                    243:       IF( KWTOP.EQ.KTOP ) THEN
                    244:          S = ZERO
                    245:       ELSE
                    246:          S = H( KWTOP, KWTOP-1 )
                    247:       END IF
                    248: *
                    249:       IF( KBOT.EQ.KWTOP ) THEN
                    250: *
                    251: *        ==== 1-by-1 deflation window: not much to do ====
                    252: *
                    253:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    254:          SI( KWTOP ) = ZERO
                    255:          NS = 1
                    256:          ND = 0
                    257:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    258:      $        THEN
                    259:             NS = 0
                    260:             ND = 1
                    261:             IF( KWTOP.GT.KTOP )
                    262:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    263:          END IF
                    264:          WORK( 1 ) = ONE
                    265:          RETURN
                    266:       END IF
                    267: *
                    268: *     ==== Convert to spike-triangular form.  (In case of a
                    269: *     .    rare QR failure, this routine continues to do
                    270: *     .    aggressive early deflation using that part of
                    271: *     .    the deflation window that converged using INFQR
                    272: *     .    here and there to keep track.) ====
                    273: *
                    274:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    275:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    276: *
                    277:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    278:       NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
                    279:       IF( JW.GT.NMIN ) THEN
                    280:          CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    281:      $                SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
                    282:       ELSE
                    283:          CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    284:      $                SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    285:       END IF
                    286: *
                    287: *     ==== DTREXC needs a clean margin near the diagonal ====
                    288: *
                    289:       DO 10 J = 1, JW - 3
                    290:          T( J+2, J ) = ZERO
                    291:          T( J+3, J ) = ZERO
                    292:    10 CONTINUE
                    293:       IF( JW.GT.2 )
                    294:      $   T( JW, JW-2 ) = ZERO
                    295: *
                    296: *     ==== Deflation detection loop ====
                    297: *
                    298:       NS = JW
                    299:       ILST = INFQR + 1
                    300:    20 CONTINUE
                    301:       IF( ILST.LE.NS ) THEN
                    302:          IF( NS.EQ.1 ) THEN
                    303:             BULGE = .FALSE.
                    304:          ELSE
                    305:             BULGE = T( NS, NS-1 ).NE.ZERO
                    306:          END IF
                    307: *
                    308: *        ==== Small spike tip test for deflation ====
                    309: *
                    310:          IF( .NOT.BULGE ) THEN
                    311: *
                    312: *           ==== Real eigenvalue ====
                    313: *
                    314:             FOO = ABS( T( NS, NS ) )
                    315:             IF( FOO.EQ.ZERO )
                    316:      $         FOO = ABS( S )
                    317:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    318: *
                    319: *              ==== Deflatable ====
                    320: *
                    321:                NS = NS - 1
                    322:             ELSE
                    323: *
                    324: *              ==== Undeflatable.   Move it up out of the way.
                    325: *              .    (DTREXC can not fail in this case.) ====
                    326: *
                    327:                IFST = NS
                    328:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    329:      $                      INFO )
                    330:                ILST = ILST + 1
                    331:             END IF
                    332:          ELSE
                    333: *
                    334: *           ==== Complex conjugate pair ====
                    335: *
                    336:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    337:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    338:             IF( FOO.EQ.ZERO )
                    339:      $         FOO = ABS( S )
                    340:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    341:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    342: *
                    343: *              ==== Deflatable ====
                    344: *
                    345:                NS = NS - 2
                    346:             ELSE
                    347: *
                    348: *              ==== Undeflatable. Move them up out of the way.
                    349: *              .    Fortunately, DTREXC does the right thing with
                    350: *              .    ILST in case of a rare exchange failure. ====
                    351: *
                    352:                IFST = NS
                    353:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    354:      $                      INFO )
                    355:                ILST = ILST + 2
                    356:             END IF
                    357:          END IF
                    358: *
                    359: *        ==== End deflation detection loop ====
                    360: *
                    361:          GO TO 20
                    362:       END IF
                    363: *
                    364: *        ==== Return to Hessenberg form ====
                    365: *
                    366:       IF( NS.EQ.0 )
                    367:      $   S = ZERO
                    368: *
                    369:       IF( NS.LT.JW ) THEN
                    370: *
                    371: *        ==== sorting diagonal blocks of T improves accuracy for
                    372: *        .    graded matrices.  Bubble sort deals well with
                    373: *        .    exchange failures. ====
                    374: *
                    375:          SORTED = .false.
                    376:          I = NS + 1
                    377:    30    CONTINUE
                    378:          IF( SORTED )
                    379:      $      GO TO 50
                    380:          SORTED = .true.
                    381: *
                    382:          KEND = I - 1
                    383:          I = INFQR + 1
                    384:          IF( I.EQ.NS ) THEN
                    385:             K = I + 1
                    386:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    387:             K = I + 1
                    388:          ELSE
                    389:             K = I + 2
                    390:          END IF
                    391:    40    CONTINUE
                    392:          IF( K.LE.KEND ) THEN
                    393:             IF( K.EQ.I+1 ) THEN
                    394:                EVI = ABS( T( I, I ) )
                    395:             ELSE
                    396:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    397:      $               SQRT( ABS( T( I, I+1 ) ) )
                    398:             END IF
                    399: *
                    400:             IF( K.EQ.KEND ) THEN
                    401:                EVK = ABS( T( K, K ) )
                    402:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    403:                EVK = ABS( T( K, K ) )
                    404:             ELSE
                    405:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    406:      $               SQRT( ABS( T( K, K+1 ) ) )
                    407:             END IF
                    408: *
                    409:             IF( EVI.GE.EVK ) THEN
                    410:                I = K
                    411:             ELSE
                    412:                SORTED = .false.
                    413:                IFST = I
                    414:                ILST = K
                    415:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    416:      $                      INFO )
                    417:                IF( INFO.EQ.0 ) THEN
                    418:                   I = ILST
                    419:                ELSE
                    420:                   I = K
                    421:                END IF
                    422:             END IF
                    423:             IF( I.EQ.KEND ) THEN
                    424:                K = I + 1
                    425:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    426:                K = I + 1
                    427:             ELSE
                    428:                K = I + 2
                    429:             END IF
                    430:             GO TO 40
                    431:          END IF
                    432:          GO TO 30
                    433:    50    CONTINUE
                    434:       END IF
                    435: *
                    436: *     ==== Restore shift/eigenvalue array from T ====
                    437: *
                    438:       I = JW
                    439:    60 CONTINUE
                    440:       IF( I.GE.INFQR+1 ) THEN
                    441:          IF( I.EQ.INFQR+1 ) THEN
                    442:             SR( KWTOP+I-1 ) = T( I, I )
                    443:             SI( KWTOP+I-1 ) = ZERO
                    444:             I = I - 1
                    445:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    446:             SR( KWTOP+I-1 ) = T( I, I )
                    447:             SI( KWTOP+I-1 ) = ZERO
                    448:             I = I - 1
                    449:          ELSE
                    450:             AA = T( I-1, I-1 )
                    451:             CC = T( I, I-1 )
                    452:             BB = T( I-1, I )
                    453:             DD = T( I, I )
                    454:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    455:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    456:      $                   SI( KWTOP+I-1 ), CS, SN )
                    457:             I = I - 2
                    458:          END IF
                    459:          GO TO 60
                    460:       END IF
                    461: *
                    462:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    463:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    464: *
                    465: *           ==== Reflect spike back into lower triangle ====
                    466: *
                    467:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    468:             BETA = WORK( 1 )
                    469:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    470:             WORK( 1 ) = ONE
                    471: *
                    472:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    473: *
                    474:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    475:      $                  WORK( JW+1 ) )
                    476:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    477:      $                  WORK( JW+1 ) )
                    478:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    479:      $                  WORK( JW+1 ) )
                    480: *
                    481:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    482:      $                   LWORK-JW, INFO )
                    483:          END IF
                    484: *
                    485: *        ==== Copy updated reduced window into place ====
                    486: *
                    487:          IF( KWTOP.GT.1 )
                    488:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    489:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    490:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    491:      $               LDH+1 )
                    492: *
                    493: *        ==== Accumulate orthogonal matrix in order update
                    494: *        .    H and Z, if requested.  ====
                    495: *
                    496:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    497:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    498:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    499: *
                    500: *        ==== Update vertical slab in H ====
                    501: *
                    502:          IF( WANTT ) THEN
                    503:             LTOP = 1
                    504:          ELSE
                    505:             LTOP = KTOP
                    506:          END IF
                    507:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    508:             KLN = MIN( NV, KWTOP-KROW )
                    509:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    510:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    511:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    512:    70    CONTINUE
                    513: *
                    514: *        ==== Update horizontal slab in H ====
                    515: *
                    516:          IF( WANTT ) THEN
                    517:             DO 80 KCOL = KBOT + 1, N, NH
                    518:                KLN = MIN( NH, N-KCOL+1 )
                    519:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    520:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    521:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    522:      $                      LDH )
                    523:    80       CONTINUE
                    524:          END IF
                    525: *
                    526: *        ==== Update vertical slab in Z ====
                    527: *
                    528:          IF( WANTZ ) THEN
                    529:             DO 90 KROW = ILOZ, IHIZ, NV
                    530:                KLN = MIN( NV, IHIZ-KROW+1 )
                    531:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    532:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    533:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    534:      $                      LDZ )
                    535:    90       CONTINUE
                    536:          END IF
                    537:       END IF
                    538: *
                    539: *     ==== Return the number of deflations ... ====
                    540: *
                    541:       ND = JW - NS
                    542: *
                    543: *     ==== ... and the number of shifts. (Subtracting
                    544: *     .    INFQR from the spike length takes care
                    545: *     .    of the case of a rare QR failure while
                    546: *     .    calculating eigenvalues of the deflation
                    547: *     .    window.)  ====
                    548: *
                    549:       NS = NS - INFQR
                    550: *
                    551: *      ==== Return optimal workspace. ====
                    552: *
                    553:       WORK( 1 ) = DBLE( LWKOPT )
                    554: *
                    555: *     ==== End of DLAQR3 ====
                    556: *
                    557:       END

CVSweb interface <joel.bertrand@systella.fr>