Annotation of rpl/lapack/lapack/dlaqr2.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAQR2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAQR2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !            22: *                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
        !            23: *                          LDT, NV, WV, LDWV, WORK, LWORK )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
        !            27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
        !            28: *       LOGICAL            WANTT, WANTZ
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
        !            32: *      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
        !            33: *      $                   Z( LDZ, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *>    DLAQR2 is identical to DLAQR3 except that it avoids
        !            43: *>    recursion by calling DLAHQR instead of DLAQR4.
        !            44: *>
        !            45: *>    Aggressive early deflation:
        !            46: *>
        !            47: *>    This subroutine accepts as input an upper Hessenberg matrix
        !            48: *>    H and performs an orthogonal similarity transformation
        !            49: *>    designed to detect and deflate fully converged eigenvalues from
        !            50: *>    a trailing principal submatrix.  On output H has been over-
        !            51: *>    written by a new Hessenberg matrix that is a perturbation of
        !            52: *>    an orthogonal similarity transformation of H.  It is to be
        !            53: *>    hoped that the final version of H has many zero subdiagonal
        !            54: *>    entries.
        !            55: *> \endverbatim
        !            56: *
        !            57: *  Arguments:
        !            58: *  ==========
        !            59: *
        !            60: *> \param[in] WANTT
        !            61: *> \verbatim
        !            62: *>          WANTT is LOGICAL
        !            63: *>          If .TRUE., then the Hessenberg matrix H is fully updated
        !            64: *>          so that the quasi-triangular Schur factor may be
        !            65: *>          computed (in cooperation with the calling subroutine).
        !            66: *>          If .FALSE., then only enough of H is updated to preserve
        !            67: *>          the eigenvalues.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] WANTZ
        !            71: *> \verbatim
        !            72: *>          WANTZ is LOGICAL
        !            73: *>          If .TRUE., then the orthogonal matrix Z is updated so
        !            74: *>          so that the orthogonal Schur factor may be computed
        !            75: *>          (in cooperation with the calling subroutine).
        !            76: *>          If .FALSE., then Z is not referenced.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] N
        !            80: *> \verbatim
        !            81: *>          N is INTEGER
        !            82: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
        !            83: *>          order of the orthogonal matrix Z.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] KTOP
        !            87: *> \verbatim
        !            88: *>          KTOP is INTEGER
        !            89: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
        !            90: *>          KBOT and KTOP together determine an isolated block
        !            91: *>          along the diagonal of the Hessenberg matrix.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] KBOT
        !            95: *> \verbatim
        !            96: *>          KBOT is INTEGER
        !            97: *>          It is assumed without a check that either
        !            98: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
        !            99: *>          determine an isolated block along the diagonal of the
        !           100: *>          Hessenberg matrix.
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in] NW
        !           104: *> \verbatim
        !           105: *>          NW is INTEGER
        !           106: *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in,out] H
        !           110: *> \verbatim
        !           111: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
        !           112: *>          On input the initial N-by-N section of H stores the
        !           113: *>          Hessenberg matrix undergoing aggressive early deflation.
        !           114: *>          On output H has been transformed by an orthogonal
        !           115: *>          similarity transformation, perturbed, and the returned
        !           116: *>          to Hessenberg form that (it is to be hoped) has some
        !           117: *>          zero subdiagonal entries.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in] LDH
        !           121: *> \verbatim
        !           122: *>          LDH is integer
        !           123: *>          Leading dimension of H just as declared in the calling
        !           124: *>          subroutine.  N .LE. LDH
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] ILOZ
        !           128: *> \verbatim
        !           129: *>          ILOZ is INTEGER
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] IHIZ
        !           133: *> \verbatim
        !           134: *>          IHIZ is INTEGER
        !           135: *>          Specify the rows of Z to which transformations must be
        !           136: *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in,out] Z
        !           140: *> \verbatim
        !           141: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
        !           142: *>          IF WANTZ is .TRUE., then on output, the orthogonal
        !           143: *>          similarity transformation mentioned above has been
        !           144: *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
        !           145: *>          If WANTZ is .FALSE., then Z is unreferenced.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[in] LDZ
        !           149: *> \verbatim
        !           150: *>          LDZ is integer
        !           151: *>          The leading dimension of Z just as declared in the
        !           152: *>          calling subroutine.  1 .LE. LDZ.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] NS
        !           156: *> \verbatim
        !           157: *>          NS is integer
        !           158: *>          The number of unconverged (ie approximate) eigenvalues
        !           159: *>          returned in SR and SI that may be used as shifts by the
        !           160: *>          calling subroutine.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[out] ND
        !           164: *> \verbatim
        !           165: *>          ND is integer
        !           166: *>          The number of converged eigenvalues uncovered by this
        !           167: *>          subroutine.
        !           168: *> \endverbatim
        !           169: *>
        !           170: *> \param[out] SR
        !           171: *> \verbatim
        !           172: *>          SR is DOUBLE PRECISION array, dimension (KBOT)
        !           173: *> \endverbatim
        !           174: *>
        !           175: *> \param[out] SI
        !           176: *> \verbatim
        !           177: *>          SI is DOUBLE PRECISION array, dimension (KBOT)
        !           178: *>          On output, the real and imaginary parts of approximate
        !           179: *>          eigenvalues that may be used for shifts are stored in
        !           180: *>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
        !           181: *>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
        !           182: *>          The real and imaginary parts of converged eigenvalues
        !           183: *>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
        !           184: *>          SI(KBOT-ND+1) through SI(KBOT), respectively.
        !           185: *> \endverbatim
        !           186: *>
        !           187: *> \param[out] V
        !           188: *> \verbatim
        !           189: *>          V is DOUBLE PRECISION array, dimension (LDV,NW)
        !           190: *>          An NW-by-NW work array.
        !           191: *> \endverbatim
        !           192: *>
        !           193: *> \param[in] LDV
        !           194: *> \verbatim
        !           195: *>          LDV is integer scalar
        !           196: *>          The leading dimension of V just as declared in the
        !           197: *>          calling subroutine.  NW .LE. LDV
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] NH
        !           201: *> \verbatim
        !           202: *>          NH is integer scalar
        !           203: *>          The number of columns of T.  NH.GE.NW.
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[out] T
        !           207: *> \verbatim
        !           208: *>          T is DOUBLE PRECISION array, dimension (LDT,NW)
        !           209: *> \endverbatim
        !           210: *>
        !           211: *> \param[in] LDT
        !           212: *> \verbatim
        !           213: *>          LDT is integer
        !           214: *>          The leading dimension of T just as declared in the
        !           215: *>          calling subroutine.  NW .LE. LDT
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[in] NV
        !           219: *> \verbatim
        !           220: *>          NV is integer
        !           221: *>          The number of rows of work array WV available for
        !           222: *>          workspace.  NV.GE.NW.
        !           223: *> \endverbatim
        !           224: *>
        !           225: *> \param[out] WV
        !           226: *> \verbatim
        !           227: *>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
        !           228: *> \endverbatim
        !           229: *>
        !           230: *> \param[in] LDWV
        !           231: *> \verbatim
        !           232: *>          LDWV is integer
        !           233: *>          The leading dimension of W just as declared in the
        !           234: *>          calling subroutine.  NW .LE. LDV
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] WORK
        !           238: *> \verbatim
        !           239: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
        !           240: *>          On exit, WORK(1) is set to an estimate of the optimal value
        !           241: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[in] LWORK
        !           245: *> \verbatim
        !           246: *>          LWORK is integer
        !           247: *>          The dimension of the work array WORK.  LWORK = 2*NW
        !           248: *>          suffices, but greater efficiency may result from larger
        !           249: *>          values of LWORK.
        !           250: *>
        !           251: *>          If LWORK = -1, then a workspace query is assumed; DLAQR2
        !           252: *>          only estimates the optimal workspace size for the given
        !           253: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
        !           254: *>          in WORK(1).  No error message related to LWORK is issued
        !           255: *>          by XERBLA.  Neither H nor Z are accessed.
        !           256: *> \endverbatim
        !           257: *
        !           258: *  Authors:
        !           259: *  ========
        !           260: *
        !           261: *> \author Univ. of Tennessee 
        !           262: *> \author Univ. of California Berkeley 
        !           263: *> \author Univ. of Colorado Denver 
        !           264: *> \author NAG Ltd. 
        !           265: *
        !           266: *> \date November 2011
        !           267: *
        !           268: *> \ingroup doubleOTHERauxiliary
        !           269: *
        !           270: *> \par Contributors:
        !           271: *  ==================
        !           272: *>
        !           273: *>       Karen Braman and Ralph Byers, Department of Mathematics,
        !           274: *>       University of Kansas, USA
        !           275: *>
        !           276: *  =====================================================================
1.1       bertrand  277:       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    278:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                    279:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                    280: *
1.9     ! bertrand  281: *  -- LAPACK auxiliary routine (version 3.4.0) --
        !           282: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           283: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           284: *     November 2011
1.1       bertrand  285: *
                    286: *     .. Scalar Arguments ..
                    287:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    288:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    289:       LOGICAL            WANTT, WANTZ
                    290: *     ..
                    291: *     .. Array Arguments ..
                    292:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                    293:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                    294:      $                   Z( LDZ, * )
                    295: *     ..
                    296: *
1.9     ! bertrand  297: *  ================================================================
1.1       bertrand  298: *     .. Parameters ..
                    299:       DOUBLE PRECISION   ZERO, ONE
                    300:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    301: *     ..
                    302: *     .. Local Scalars ..
                    303:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    304:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    305:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    306:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
                    307:      $                   LWKOPT
                    308:       LOGICAL            BULGE, SORTED
                    309: *     ..
                    310: *     .. External Functions ..
                    311:       DOUBLE PRECISION   DLAMCH
                    312:       EXTERNAL           DLAMCH
                    313: *     ..
                    314: *     .. External Subroutines ..
                    315:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    316:      $                   DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
                    317: *     ..
                    318: *     .. Intrinsic Functions ..
                    319:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    320: *     ..
                    321: *     .. Executable Statements ..
                    322: *
                    323: *     ==== Estimate optimal workspace. ====
                    324: *
                    325:       JW = MIN( NW, KBOT-KTOP+1 )
                    326:       IF( JW.LE.2 ) THEN
                    327:          LWKOPT = 1
                    328:       ELSE
                    329: *
                    330: *        ==== Workspace query call to DGEHRD ====
                    331: *
                    332:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    333:          LWK1 = INT( WORK( 1 ) )
                    334: *
                    335: *        ==== Workspace query call to DORMHR ====
                    336: *
                    337:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    338:      $                WORK, -1, INFO )
                    339:          LWK2 = INT( WORK( 1 ) )
                    340: *
                    341: *        ==== Optimal workspace ====
                    342: *
                    343:          LWKOPT = JW + MAX( LWK1, LWK2 )
                    344:       END IF
                    345: *
                    346: *     ==== Quick return in case of workspace query. ====
                    347: *
                    348:       IF( LWORK.EQ.-1 ) THEN
                    349:          WORK( 1 ) = DBLE( LWKOPT )
                    350:          RETURN
                    351:       END IF
                    352: *
                    353: *     ==== Nothing to do ...
                    354: *     ... for an empty active block ... ====
                    355:       NS = 0
                    356:       ND = 0
                    357:       WORK( 1 ) = ONE
                    358:       IF( KTOP.GT.KBOT )
                    359:      $   RETURN
                    360: *     ... nor for an empty deflation window. ====
                    361:       IF( NW.LT.1 )
                    362:      $   RETURN
                    363: *
                    364: *     ==== Machine constants ====
                    365: *
                    366:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    367:       SAFMAX = ONE / SAFMIN
                    368:       CALL DLABAD( SAFMIN, SAFMAX )
                    369:       ULP = DLAMCH( 'PRECISION' )
                    370:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    371: *
                    372: *     ==== Setup deflation window ====
                    373: *
                    374:       JW = MIN( NW, KBOT-KTOP+1 )
                    375:       KWTOP = KBOT - JW + 1
                    376:       IF( KWTOP.EQ.KTOP ) THEN
                    377:          S = ZERO
                    378:       ELSE
                    379:          S = H( KWTOP, KWTOP-1 )
                    380:       END IF
                    381: *
                    382:       IF( KBOT.EQ.KWTOP ) THEN
                    383: *
                    384: *        ==== 1-by-1 deflation window: not much to do ====
                    385: *
                    386:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    387:          SI( KWTOP ) = ZERO
                    388:          NS = 1
                    389:          ND = 0
                    390:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    391:      $        THEN
                    392:             NS = 0
                    393:             ND = 1
                    394:             IF( KWTOP.GT.KTOP )
                    395:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    396:          END IF
                    397:          WORK( 1 ) = ONE
                    398:          RETURN
                    399:       END IF
                    400: *
                    401: *     ==== Convert to spike-triangular form.  (In case of a
                    402: *     .    rare QR failure, this routine continues to do
                    403: *     .    aggressive early deflation using that part of
                    404: *     .    the deflation window that converged using INFQR
                    405: *     .    here and there to keep track.) ====
                    406: *
                    407:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    408:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    409: *
                    410:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    411:       CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    412:      $             SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    413: *
                    414: *     ==== DTREXC needs a clean margin near the diagonal ====
                    415: *
                    416:       DO 10 J = 1, JW - 3
                    417:          T( J+2, J ) = ZERO
                    418:          T( J+3, J ) = ZERO
                    419:    10 CONTINUE
                    420:       IF( JW.GT.2 )
                    421:      $   T( JW, JW-2 ) = ZERO
                    422: *
                    423: *     ==== Deflation detection loop ====
                    424: *
                    425:       NS = JW
                    426:       ILST = INFQR + 1
                    427:    20 CONTINUE
                    428:       IF( ILST.LE.NS ) THEN
                    429:          IF( NS.EQ.1 ) THEN
                    430:             BULGE = .FALSE.
                    431:          ELSE
                    432:             BULGE = T( NS, NS-1 ).NE.ZERO
                    433:          END IF
                    434: *
                    435: *        ==== Small spike tip test for deflation ====
                    436: *
                    437:          IF( .NOT.BULGE ) THEN
                    438: *
                    439: *           ==== Real eigenvalue ====
                    440: *
                    441:             FOO = ABS( T( NS, NS ) )
                    442:             IF( FOO.EQ.ZERO )
                    443:      $         FOO = ABS( S )
                    444:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    445: *
                    446: *              ==== Deflatable ====
                    447: *
                    448:                NS = NS - 1
                    449:             ELSE
                    450: *
                    451: *              ==== Undeflatable.   Move it up out of the way.
                    452: *              .    (DTREXC can not fail in this case.) ====
                    453: *
                    454:                IFST = NS
                    455:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    456:      $                      INFO )
                    457:                ILST = ILST + 1
                    458:             END IF
                    459:          ELSE
                    460: *
                    461: *           ==== Complex conjugate pair ====
                    462: *
                    463:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    464:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    465:             IF( FOO.EQ.ZERO )
                    466:      $         FOO = ABS( S )
                    467:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    468:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    469: *
                    470: *              ==== Deflatable ====
                    471: *
                    472:                NS = NS - 2
                    473:             ELSE
                    474: *
                    475: *              ==== Undeflatable. Move them up out of the way.
                    476: *              .    Fortunately, DTREXC does the right thing with
                    477: *              .    ILST in case of a rare exchange failure. ====
                    478: *
                    479:                IFST = NS
                    480:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    481:      $                      INFO )
                    482:                ILST = ILST + 2
                    483:             END IF
                    484:          END IF
                    485: *
                    486: *        ==== End deflation detection loop ====
                    487: *
                    488:          GO TO 20
                    489:       END IF
                    490: *
                    491: *        ==== Return to Hessenberg form ====
                    492: *
                    493:       IF( NS.EQ.0 )
                    494:      $   S = ZERO
                    495: *
                    496:       IF( NS.LT.JW ) THEN
                    497: *
                    498: *        ==== sorting diagonal blocks of T improves accuracy for
                    499: *        .    graded matrices.  Bubble sort deals well with
                    500: *        .    exchange failures. ====
                    501: *
                    502:          SORTED = .false.
                    503:          I = NS + 1
                    504:    30    CONTINUE
                    505:          IF( SORTED )
                    506:      $      GO TO 50
                    507:          SORTED = .true.
                    508: *
                    509:          KEND = I - 1
                    510:          I = INFQR + 1
                    511:          IF( I.EQ.NS ) THEN
                    512:             K = I + 1
                    513:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    514:             K = I + 1
                    515:          ELSE
                    516:             K = I + 2
                    517:          END IF
                    518:    40    CONTINUE
                    519:          IF( K.LE.KEND ) THEN
                    520:             IF( K.EQ.I+1 ) THEN
                    521:                EVI = ABS( T( I, I ) )
                    522:             ELSE
                    523:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    524:      $               SQRT( ABS( T( I, I+1 ) ) )
                    525:             END IF
                    526: *
                    527:             IF( K.EQ.KEND ) THEN
                    528:                EVK = ABS( T( K, K ) )
                    529:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    530:                EVK = ABS( T( K, K ) )
                    531:             ELSE
                    532:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    533:      $               SQRT( ABS( T( K, K+1 ) ) )
                    534:             END IF
                    535: *
                    536:             IF( EVI.GE.EVK ) THEN
                    537:                I = K
                    538:             ELSE
                    539:                SORTED = .false.
                    540:                IFST = I
                    541:                ILST = K
                    542:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    543:      $                      INFO )
                    544:                IF( INFO.EQ.0 ) THEN
                    545:                   I = ILST
                    546:                ELSE
                    547:                   I = K
                    548:                END IF
                    549:             END IF
                    550:             IF( I.EQ.KEND ) THEN
                    551:                K = I + 1
                    552:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    553:                K = I + 1
                    554:             ELSE
                    555:                K = I + 2
                    556:             END IF
                    557:             GO TO 40
                    558:          END IF
                    559:          GO TO 30
                    560:    50    CONTINUE
                    561:       END IF
                    562: *
                    563: *     ==== Restore shift/eigenvalue array from T ====
                    564: *
                    565:       I = JW
                    566:    60 CONTINUE
                    567:       IF( I.GE.INFQR+1 ) THEN
                    568:          IF( I.EQ.INFQR+1 ) THEN
                    569:             SR( KWTOP+I-1 ) = T( I, I )
                    570:             SI( KWTOP+I-1 ) = ZERO
                    571:             I = I - 1
                    572:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    573:             SR( KWTOP+I-1 ) = T( I, I )
                    574:             SI( KWTOP+I-1 ) = ZERO
                    575:             I = I - 1
                    576:          ELSE
                    577:             AA = T( I-1, I-1 )
                    578:             CC = T( I, I-1 )
                    579:             BB = T( I-1, I )
                    580:             DD = T( I, I )
                    581:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    582:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    583:      $                   SI( KWTOP+I-1 ), CS, SN )
                    584:             I = I - 2
                    585:          END IF
                    586:          GO TO 60
                    587:       END IF
                    588: *
                    589:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    590:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    591: *
                    592: *           ==== Reflect spike back into lower triangle ====
                    593: *
                    594:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    595:             BETA = WORK( 1 )
                    596:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    597:             WORK( 1 ) = ONE
                    598: *
                    599:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    600: *
                    601:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    602:      $                  WORK( JW+1 ) )
                    603:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    604:      $                  WORK( JW+1 ) )
                    605:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    606:      $                  WORK( JW+1 ) )
                    607: *
                    608:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    609:      $                   LWORK-JW, INFO )
                    610:          END IF
                    611: *
                    612: *        ==== Copy updated reduced window into place ====
                    613: *
                    614:          IF( KWTOP.GT.1 )
                    615:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    616:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    617:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    618:      $               LDH+1 )
                    619: *
                    620: *        ==== Accumulate orthogonal matrix in order update
                    621: *        .    H and Z, if requested.  ====
                    622: *
                    623:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    624:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    625:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    626: *
                    627: *        ==== Update vertical slab in H ====
                    628: *
                    629:          IF( WANTT ) THEN
                    630:             LTOP = 1
                    631:          ELSE
                    632:             LTOP = KTOP
                    633:          END IF
                    634:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    635:             KLN = MIN( NV, KWTOP-KROW )
                    636:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    637:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    638:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    639:    70    CONTINUE
                    640: *
                    641: *        ==== Update horizontal slab in H ====
                    642: *
                    643:          IF( WANTT ) THEN
                    644:             DO 80 KCOL = KBOT + 1, N, NH
                    645:                KLN = MIN( NH, N-KCOL+1 )
                    646:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    647:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    648:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    649:      $                      LDH )
                    650:    80       CONTINUE
                    651:          END IF
                    652: *
                    653: *        ==== Update vertical slab in Z ====
                    654: *
                    655:          IF( WANTZ ) THEN
                    656:             DO 90 KROW = ILOZ, IHIZ, NV
                    657:                KLN = MIN( NV, IHIZ-KROW+1 )
                    658:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    659:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    660:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    661:      $                      LDZ )
                    662:    90       CONTINUE
                    663:          END IF
                    664:       END IF
                    665: *
                    666: *     ==== Return the number of deflations ... ====
                    667: *
                    668:       ND = JW - NS
                    669: *
                    670: *     ==== ... and the number of shifts. (Subtracting
                    671: *     .    INFQR from the spike length takes care
                    672: *     .    of the case of a rare QR failure while
                    673: *     .    calculating eigenvalues of the deflation
                    674: *     .    window.)  ====
                    675: *
                    676:       NS = NS - INFQR
                    677: *
                    678: *      ==== Return optimal workspace. ====
                    679: *
                    680:       WORK( 1 ) = DBLE( LWKOPT )
                    681: *
                    682: *     ==== End of DLAQR2 ====
                    683: *
                    684:       END

CVSweb interface <joel.bertrand@systella.fr>