Annotation of rpl/lapack/lapack/dlaqr2.f, revision 1.21

1.12      bertrand    1: *> \brief \b DLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLAQR2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                     22: *                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                     23: *                          LDT, NV, WV, LDWV, WORK, LWORK )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     28: *       LOGICAL            WANTT, WANTZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                     32: *      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                     33: *      $                   Z( LDZ, * )
                     34: *       ..
1.16      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *>    DLAQR2 is identical to DLAQR3 except that it avoids
                     43: *>    recursion by calling DLAHQR instead of DLAQR4.
                     44: *>
                     45: *>    Aggressive early deflation:
                     46: *>
                     47: *>    This subroutine accepts as input an upper Hessenberg matrix
                     48: *>    H and performs an orthogonal similarity transformation
                     49: *>    designed to detect and deflate fully converged eigenvalues from
                     50: *>    a trailing principal submatrix.  On output H has been over-
                     51: *>    written by a new Hessenberg matrix that is a perturbation of
                     52: *>    an orthogonal similarity transformation of H.  It is to be
                     53: *>    hoped that the final version of H has many zero subdiagonal
                     54: *>    entries.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] WANTT
                     61: *> \verbatim
                     62: *>          WANTT is LOGICAL
                     63: *>          If .TRUE., then the Hessenberg matrix H is fully updated
                     64: *>          so that the quasi-triangular Schur factor may be
                     65: *>          computed (in cooperation with the calling subroutine).
                     66: *>          If .FALSE., then only enough of H is updated to preserve
                     67: *>          the eigenvalues.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] WANTZ
                     71: *> \verbatim
                     72: *>          WANTZ is LOGICAL
                     73: *>          If .TRUE., then the orthogonal matrix Z is updated so
                     74: *>          so that the orthogonal Schur factor may be computed
                     75: *>          (in cooperation with the calling subroutine).
                     76: *>          If .FALSE., then Z is not referenced.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
                     83: *>          order of the orthogonal matrix Z.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] KTOP
                     87: *> \verbatim
                     88: *>          KTOP is INTEGER
                     89: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     90: *>          KBOT and KTOP together determine an isolated block
                     91: *>          along the diagonal of the Hessenberg matrix.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] KBOT
                     95: *> \verbatim
                     96: *>          KBOT is INTEGER
                     97: *>          It is assumed without a check that either
                     98: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     99: *>          determine an isolated block along the diagonal of the
                    100: *>          Hessenberg matrix.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] NW
                    104: *> \verbatim
                    105: *>          NW is INTEGER
1.20      bertrand  106: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
1.9       bertrand  107: *> \endverbatim
                    108: *>
                    109: *> \param[in,out] H
                    110: *> \verbatim
                    111: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                    112: *>          On input the initial N-by-N section of H stores the
                    113: *>          Hessenberg matrix undergoing aggressive early deflation.
                    114: *>          On output H has been transformed by an orthogonal
                    115: *>          similarity transformation, perturbed, and the returned
                    116: *>          to Hessenberg form that (it is to be hoped) has some
                    117: *>          zero subdiagonal entries.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDH
                    121: *> \verbatim
1.18      bertrand  122: *>          LDH is INTEGER
1.9       bertrand  123: *>          Leading dimension of H just as declared in the calling
1.20      bertrand  124: *>          subroutine.  N <= LDH
1.9       bertrand  125: *> \endverbatim
                    126: *>
                    127: *> \param[in] ILOZ
                    128: *> \verbatim
                    129: *>          ILOZ is INTEGER
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] IHIZ
                    133: *> \verbatim
                    134: *>          IHIZ is INTEGER
                    135: *>          Specify the rows of Z to which transformations must be
1.20      bertrand  136: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
1.9       bertrand  137: *> \endverbatim
                    138: *>
                    139: *> \param[in,out] Z
                    140: *> \verbatim
                    141: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    142: *>          IF WANTZ is .TRUE., then on output, the orthogonal
                    143: *>          similarity transformation mentioned above has been
1.16      bertrand  144: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
1.9       bertrand  145: *>          If WANTZ is .FALSE., then Z is unreferenced.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDZ
                    149: *> \verbatim
1.18      bertrand  150: *>          LDZ is INTEGER
1.9       bertrand  151: *>          The leading dimension of Z just as declared in the
1.20      bertrand  152: *>          calling subroutine.  1 <= LDZ.
1.9       bertrand  153: *> \endverbatim
                    154: *>
                    155: *> \param[out] NS
                    156: *> \verbatim
1.18      bertrand  157: *>          NS is INTEGER
1.9       bertrand  158: *>          The number of unconverged (ie approximate) eigenvalues
                    159: *>          returned in SR and SI that may be used as shifts by the
                    160: *>          calling subroutine.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] ND
                    164: *> \verbatim
1.18      bertrand  165: *>          ND is INTEGER
1.9       bertrand  166: *>          The number of converged eigenvalues uncovered by this
                    167: *>          subroutine.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] SR
                    171: *> \verbatim
                    172: *>          SR is DOUBLE PRECISION array, dimension (KBOT)
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] SI
                    176: *> \verbatim
                    177: *>          SI is DOUBLE PRECISION array, dimension (KBOT)
                    178: *>          On output, the real and imaginary parts of approximate
                    179: *>          eigenvalues that may be used for shifts are stored in
                    180: *>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
                    181: *>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
                    182: *>          The real and imaginary parts of converged eigenvalues
                    183: *>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
                    184: *>          SI(KBOT-ND+1) through SI(KBOT), respectively.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] V
                    188: *> \verbatim
                    189: *>          V is DOUBLE PRECISION array, dimension (LDV,NW)
                    190: *>          An NW-by-NW work array.
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[in] LDV
                    194: *> \verbatim
1.18      bertrand  195: *>          LDV is INTEGER
1.9       bertrand  196: *>          The leading dimension of V just as declared in the
1.20      bertrand  197: *>          calling subroutine.  NW <= LDV
1.9       bertrand  198: *> \endverbatim
                    199: *>
                    200: *> \param[in] NH
                    201: *> \verbatim
1.18      bertrand  202: *>          NH is INTEGER
1.20      bertrand  203: *>          The number of columns of T.  NH >= NW.
1.9       bertrand  204: *> \endverbatim
                    205: *>
                    206: *> \param[out] T
                    207: *> \verbatim
                    208: *>          T is DOUBLE PRECISION array, dimension (LDT,NW)
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in] LDT
                    212: *> \verbatim
1.18      bertrand  213: *>          LDT is INTEGER
1.9       bertrand  214: *>          The leading dimension of T just as declared in the
1.20      bertrand  215: *>          calling subroutine.  NW <= LDT
1.9       bertrand  216: *> \endverbatim
                    217: *>
                    218: *> \param[in] NV
                    219: *> \verbatim
1.18      bertrand  220: *>          NV is INTEGER
1.9       bertrand  221: *>          The number of rows of work array WV available for
1.20      bertrand  222: *>          workspace.  NV >= NW.
1.9       bertrand  223: *> \endverbatim
                    224: *>
                    225: *> \param[out] WV
                    226: *> \verbatim
                    227: *>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[in] LDWV
                    231: *> \verbatim
1.18      bertrand  232: *>          LDWV is INTEGER
1.9       bertrand  233: *>          The leading dimension of W just as declared in the
1.20      bertrand  234: *>          calling subroutine.  NW <= LDV
1.9       bertrand  235: *> \endverbatim
                    236: *>
                    237: *> \param[out] WORK
                    238: *> \verbatim
                    239: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    240: *>          On exit, WORK(1) is set to an estimate of the optimal value
                    241: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[in] LWORK
                    245: *> \verbatim
1.18      bertrand  246: *>          LWORK is INTEGER
1.9       bertrand  247: *>          The dimension of the work array WORK.  LWORK = 2*NW
                    248: *>          suffices, but greater efficiency may result from larger
                    249: *>          values of LWORK.
                    250: *>
                    251: *>          If LWORK = -1, then a workspace query is assumed; DLAQR2
                    252: *>          only estimates the optimal workspace size for the given
                    253: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
                    254: *>          in WORK(1).  No error message related to LWORK is issued
                    255: *>          by XERBLA.  Neither H nor Z are accessed.
                    256: *> \endverbatim
                    257: *
                    258: *  Authors:
                    259: *  ========
                    260: *
1.16      bertrand  261: *> \author Univ. of Tennessee
                    262: *> \author Univ. of California Berkeley
                    263: *> \author Univ. of Colorado Denver
                    264: *> \author NAG Ltd.
1.9       bertrand  265: *
                    266: *> \ingroup doubleOTHERauxiliary
                    267: *
                    268: *> \par Contributors:
                    269: *  ==================
                    270: *>
                    271: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    272: *>       University of Kansas, USA
                    273: *>
                    274: *  =====================================================================
1.1       bertrand  275:       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    276:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                    277:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                    278: *
1.21    ! bertrand  279: *  -- LAPACK auxiliary routine --
1.9       bertrand  280: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    281: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  282: *
                    283: *     .. Scalar Arguments ..
                    284:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    285:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    286:       LOGICAL            WANTT, WANTZ
                    287: *     ..
                    288: *     .. Array Arguments ..
                    289:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                    290:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                    291:      $                   Z( LDZ, * )
                    292: *     ..
                    293: *
1.9       bertrand  294: *  ================================================================
1.1       bertrand  295: *     .. Parameters ..
                    296:       DOUBLE PRECISION   ZERO, ONE
                    297:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    298: *     ..
                    299: *     .. Local Scalars ..
                    300:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    301:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    302:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    303:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
                    304:      $                   LWKOPT
                    305:       LOGICAL            BULGE, SORTED
                    306: *     ..
                    307: *     .. External Functions ..
                    308:       DOUBLE PRECISION   DLAMCH
                    309:       EXTERNAL           DLAMCH
                    310: *     ..
                    311: *     .. External Subroutines ..
                    312:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    313:      $                   DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
                    314: *     ..
                    315: *     .. Intrinsic Functions ..
                    316:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    317: *     ..
                    318: *     .. Executable Statements ..
                    319: *
                    320: *     ==== Estimate optimal workspace. ====
                    321: *
                    322:       JW = MIN( NW, KBOT-KTOP+1 )
                    323:       IF( JW.LE.2 ) THEN
                    324:          LWKOPT = 1
                    325:       ELSE
                    326: *
                    327: *        ==== Workspace query call to DGEHRD ====
                    328: *
                    329:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    330:          LWK1 = INT( WORK( 1 ) )
                    331: *
                    332: *        ==== Workspace query call to DORMHR ====
                    333: *
                    334:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    335:      $                WORK, -1, INFO )
                    336:          LWK2 = INT( WORK( 1 ) )
                    337: *
                    338: *        ==== Optimal workspace ====
                    339: *
                    340:          LWKOPT = JW + MAX( LWK1, LWK2 )
                    341:       END IF
                    342: *
                    343: *     ==== Quick return in case of workspace query. ====
                    344: *
                    345:       IF( LWORK.EQ.-1 ) THEN
                    346:          WORK( 1 ) = DBLE( LWKOPT )
                    347:          RETURN
                    348:       END IF
                    349: *
                    350: *     ==== Nothing to do ...
                    351: *     ... for an empty active block ... ====
                    352:       NS = 0
                    353:       ND = 0
                    354:       WORK( 1 ) = ONE
                    355:       IF( KTOP.GT.KBOT )
                    356:      $   RETURN
                    357: *     ... nor for an empty deflation window. ====
                    358:       IF( NW.LT.1 )
                    359:      $   RETURN
                    360: *
                    361: *     ==== Machine constants ====
                    362: *
                    363:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    364:       SAFMAX = ONE / SAFMIN
                    365:       CALL DLABAD( SAFMIN, SAFMAX )
                    366:       ULP = DLAMCH( 'PRECISION' )
                    367:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    368: *
                    369: *     ==== Setup deflation window ====
                    370: *
                    371:       JW = MIN( NW, KBOT-KTOP+1 )
                    372:       KWTOP = KBOT - JW + 1
                    373:       IF( KWTOP.EQ.KTOP ) THEN
                    374:          S = ZERO
                    375:       ELSE
                    376:          S = H( KWTOP, KWTOP-1 )
                    377:       END IF
                    378: *
                    379:       IF( KBOT.EQ.KWTOP ) THEN
                    380: *
                    381: *        ==== 1-by-1 deflation window: not much to do ====
                    382: *
                    383:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    384:          SI( KWTOP ) = ZERO
                    385:          NS = 1
                    386:          ND = 0
                    387:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    388:      $        THEN
                    389:             NS = 0
                    390:             ND = 1
                    391:             IF( KWTOP.GT.KTOP )
                    392:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    393:          END IF
                    394:          WORK( 1 ) = ONE
                    395:          RETURN
                    396:       END IF
                    397: *
                    398: *     ==== Convert to spike-triangular form.  (In case of a
                    399: *     .    rare QR failure, this routine continues to do
                    400: *     .    aggressive early deflation using that part of
                    401: *     .    the deflation window that converged using INFQR
                    402: *     .    here and there to keep track.) ====
                    403: *
                    404:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    405:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    406: *
                    407:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    408:       CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    409:      $             SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    410: *
                    411: *     ==== DTREXC needs a clean margin near the diagonal ====
                    412: *
                    413:       DO 10 J = 1, JW - 3
                    414:          T( J+2, J ) = ZERO
                    415:          T( J+3, J ) = ZERO
                    416:    10 CONTINUE
                    417:       IF( JW.GT.2 )
                    418:      $   T( JW, JW-2 ) = ZERO
                    419: *
                    420: *     ==== Deflation detection loop ====
                    421: *
                    422:       NS = JW
                    423:       ILST = INFQR + 1
                    424:    20 CONTINUE
                    425:       IF( ILST.LE.NS ) THEN
                    426:          IF( NS.EQ.1 ) THEN
                    427:             BULGE = .FALSE.
                    428:          ELSE
                    429:             BULGE = T( NS, NS-1 ).NE.ZERO
                    430:          END IF
                    431: *
                    432: *        ==== Small spike tip test for deflation ====
                    433: *
                    434:          IF( .NOT.BULGE ) THEN
                    435: *
                    436: *           ==== Real eigenvalue ====
                    437: *
                    438:             FOO = ABS( T( NS, NS ) )
                    439:             IF( FOO.EQ.ZERO )
                    440:      $         FOO = ABS( S )
                    441:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    442: *
                    443: *              ==== Deflatable ====
                    444: *
                    445:                NS = NS - 1
                    446:             ELSE
                    447: *
                    448: *              ==== Undeflatable.   Move it up out of the way.
                    449: *              .    (DTREXC can not fail in this case.) ====
                    450: *
                    451:                IFST = NS
                    452:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    453:      $                      INFO )
                    454:                ILST = ILST + 1
                    455:             END IF
                    456:          ELSE
                    457: *
                    458: *           ==== Complex conjugate pair ====
                    459: *
                    460:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    461:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    462:             IF( FOO.EQ.ZERO )
                    463:      $         FOO = ABS( S )
                    464:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    465:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    466: *
                    467: *              ==== Deflatable ====
                    468: *
                    469:                NS = NS - 2
                    470:             ELSE
                    471: *
                    472: *              ==== Undeflatable. Move them up out of the way.
                    473: *              .    Fortunately, DTREXC does the right thing with
                    474: *              .    ILST in case of a rare exchange failure. ====
                    475: *
                    476:                IFST = NS
                    477:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    478:      $                      INFO )
                    479:                ILST = ILST + 2
                    480:             END IF
                    481:          END IF
                    482: *
                    483: *        ==== End deflation detection loop ====
                    484: *
                    485:          GO TO 20
                    486:       END IF
                    487: *
                    488: *        ==== Return to Hessenberg form ====
                    489: *
                    490:       IF( NS.EQ.0 )
                    491:      $   S = ZERO
                    492: *
                    493:       IF( NS.LT.JW ) THEN
                    494: *
                    495: *        ==== sorting diagonal blocks of T improves accuracy for
                    496: *        .    graded matrices.  Bubble sort deals well with
                    497: *        .    exchange failures. ====
                    498: *
                    499:          SORTED = .false.
                    500:          I = NS + 1
                    501:    30    CONTINUE
                    502:          IF( SORTED )
                    503:      $      GO TO 50
                    504:          SORTED = .true.
                    505: *
                    506:          KEND = I - 1
                    507:          I = INFQR + 1
                    508:          IF( I.EQ.NS ) THEN
                    509:             K = I + 1
                    510:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    511:             K = I + 1
                    512:          ELSE
                    513:             K = I + 2
                    514:          END IF
                    515:    40    CONTINUE
                    516:          IF( K.LE.KEND ) THEN
                    517:             IF( K.EQ.I+1 ) THEN
                    518:                EVI = ABS( T( I, I ) )
                    519:             ELSE
                    520:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    521:      $               SQRT( ABS( T( I, I+1 ) ) )
                    522:             END IF
                    523: *
                    524:             IF( K.EQ.KEND ) THEN
                    525:                EVK = ABS( T( K, K ) )
                    526:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    527:                EVK = ABS( T( K, K ) )
                    528:             ELSE
                    529:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    530:      $               SQRT( ABS( T( K, K+1 ) ) )
                    531:             END IF
                    532: *
                    533:             IF( EVI.GE.EVK ) THEN
                    534:                I = K
                    535:             ELSE
                    536:                SORTED = .false.
                    537:                IFST = I
                    538:                ILST = K
                    539:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    540:      $                      INFO )
                    541:                IF( INFO.EQ.0 ) THEN
                    542:                   I = ILST
                    543:                ELSE
                    544:                   I = K
                    545:                END IF
                    546:             END IF
                    547:             IF( I.EQ.KEND ) THEN
                    548:                K = I + 1
                    549:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    550:                K = I + 1
                    551:             ELSE
                    552:                K = I + 2
                    553:             END IF
                    554:             GO TO 40
                    555:          END IF
                    556:          GO TO 30
                    557:    50    CONTINUE
                    558:       END IF
                    559: *
                    560: *     ==== Restore shift/eigenvalue array from T ====
                    561: *
                    562:       I = JW
                    563:    60 CONTINUE
                    564:       IF( I.GE.INFQR+1 ) THEN
                    565:          IF( I.EQ.INFQR+1 ) THEN
                    566:             SR( KWTOP+I-1 ) = T( I, I )
                    567:             SI( KWTOP+I-1 ) = ZERO
                    568:             I = I - 1
                    569:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    570:             SR( KWTOP+I-1 ) = T( I, I )
                    571:             SI( KWTOP+I-1 ) = ZERO
                    572:             I = I - 1
                    573:          ELSE
                    574:             AA = T( I-1, I-1 )
                    575:             CC = T( I, I-1 )
                    576:             BB = T( I-1, I )
                    577:             DD = T( I, I )
                    578:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    579:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    580:      $                   SI( KWTOP+I-1 ), CS, SN )
                    581:             I = I - 2
                    582:          END IF
                    583:          GO TO 60
                    584:       END IF
                    585: *
                    586:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    587:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    588: *
                    589: *           ==== Reflect spike back into lower triangle ====
                    590: *
                    591:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    592:             BETA = WORK( 1 )
                    593:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    594:             WORK( 1 ) = ONE
                    595: *
                    596:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    597: *
                    598:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    599:      $                  WORK( JW+1 ) )
                    600:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    601:      $                  WORK( JW+1 ) )
                    602:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    603:      $                  WORK( JW+1 ) )
                    604: *
                    605:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    606:      $                   LWORK-JW, INFO )
                    607:          END IF
                    608: *
                    609: *        ==== Copy updated reduced window into place ====
                    610: *
                    611:          IF( KWTOP.GT.1 )
                    612:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    613:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    614:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    615:      $               LDH+1 )
                    616: *
                    617: *        ==== Accumulate orthogonal matrix in order update
                    618: *        .    H and Z, if requested.  ====
                    619: *
                    620:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    621:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    622:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    623: *
                    624: *        ==== Update vertical slab in H ====
                    625: *
                    626:          IF( WANTT ) THEN
                    627:             LTOP = 1
                    628:          ELSE
                    629:             LTOP = KTOP
                    630:          END IF
                    631:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    632:             KLN = MIN( NV, KWTOP-KROW )
                    633:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    634:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    635:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    636:    70    CONTINUE
                    637: *
                    638: *        ==== Update horizontal slab in H ====
                    639: *
                    640:          IF( WANTT ) THEN
                    641:             DO 80 KCOL = KBOT + 1, N, NH
                    642:                KLN = MIN( NH, N-KCOL+1 )
                    643:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    644:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    645:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    646:      $                      LDH )
                    647:    80       CONTINUE
                    648:          END IF
                    649: *
                    650: *        ==== Update vertical slab in Z ====
                    651: *
                    652:          IF( WANTZ ) THEN
                    653:             DO 90 KROW = ILOZ, IHIZ, NV
                    654:                KLN = MIN( NV, IHIZ-KROW+1 )
                    655:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    656:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    657:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    658:      $                      LDZ )
                    659:    90       CONTINUE
                    660:          END IF
                    661:       END IF
                    662: *
                    663: *     ==== Return the number of deflations ... ====
                    664: *
                    665:       ND = JW - NS
                    666: *
                    667: *     ==== ... and the number of shifts. (Subtracting
                    668: *     .    INFQR from the spike length takes care
                    669: *     .    of the case of a rare QR failure while
                    670: *     .    calculating eigenvalues of the deflation
                    671: *     .    window.)  ====
                    672: *
                    673:       NS = NS - INFQR
                    674: *
                    675: *      ==== Return optimal workspace. ====
                    676: *
                    677:       WORK( 1 ) = DBLE( LWKOPT )
                    678: *
                    679: *     ==== End of DLAQR2 ====
                    680: *
                    681:       END

CVSweb interface <joel.bertrand@systella.fr>