Annotation of rpl/lapack/lapack/dlaqr2.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                      2:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                      3:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                      4: *
                      5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
                      6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
                      7: *  -- April 2009                                                      --
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     12:       LOGICAL            WANTT, WANTZ
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                     16:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                     17:      $                   Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *     This subroutine is identical to DLAQR3 except that it avoids
                     21: *     recursion by calling DLAHQR instead of DLAQR4.
                     22: *
                     23: *
                     24: *     ******************************************************************
                     25: *     Aggressive early deflation:
                     26: *
                     27: *     This subroutine accepts as input an upper Hessenberg matrix
                     28: *     H and performs an orthogonal similarity transformation
                     29: *     designed to detect and deflate fully converged eigenvalues from
                     30: *     a trailing principal submatrix.  On output H has been over-
                     31: *     written by a new Hessenberg matrix that is a perturbation of
                     32: *     an orthogonal similarity transformation of H.  It is to be
                     33: *     hoped that the final version of H has many zero subdiagonal
                     34: *     entries.
                     35: *
                     36: *     ******************************************************************
                     37: *     WANTT   (input) LOGICAL
                     38: *          If .TRUE., then the Hessenberg matrix H is fully updated
                     39: *          so that the quasi-triangular Schur factor may be
                     40: *          computed (in cooperation with the calling subroutine).
                     41: *          If .FALSE., then only enough of H is updated to preserve
                     42: *          the eigenvalues.
                     43: *
                     44: *     WANTZ   (input) LOGICAL
                     45: *          If .TRUE., then the orthogonal matrix Z is updated so
                     46: *          so that the orthogonal Schur factor may be computed
                     47: *          (in cooperation with the calling subroutine).
                     48: *          If .FALSE., then Z is not referenced.
                     49: *
                     50: *     N       (input) INTEGER
                     51: *          The order of the matrix H and (if WANTZ is .TRUE.) the
                     52: *          order of the orthogonal matrix Z.
                     53: *
                     54: *     KTOP    (input) INTEGER
                     55: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     56: *          KBOT and KTOP together determine an isolated block
                     57: *          along the diagonal of the Hessenberg matrix.
                     58: *
                     59: *     KBOT    (input) INTEGER
                     60: *          It is assumed without a check that either
                     61: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     62: *          determine an isolated block along the diagonal of the
                     63: *          Hessenberg matrix.
                     64: *
                     65: *     NW      (input) INTEGER
                     66: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
                     67: *
                     68: *     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
                     69: *          On input the initial N-by-N section of H stores the
                     70: *          Hessenberg matrix undergoing aggressive early deflation.
                     71: *          On output H has been transformed by an orthogonal
                     72: *          similarity transformation, perturbed, and the returned
                     73: *          to Hessenberg form that (it is to be hoped) has some
                     74: *          zero subdiagonal entries.
                     75: *
                     76: *     LDH     (input) integer
                     77: *          Leading dimension of H just as declared in the calling
                     78: *          subroutine.  N .LE. LDH
                     79: *
                     80: *     ILOZ    (input) INTEGER
                     81: *     IHIZ    (input) INTEGER
                     82: *          Specify the rows of Z to which transformations must be
                     83: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
                     84: *
                     85: *     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
                     86: *          IF WANTZ is .TRUE., then on output, the orthogonal
                     87: *          similarity transformation mentioned above has been
                     88: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
                     89: *          If WANTZ is .FALSE., then Z is unreferenced.
                     90: *
                     91: *     LDZ     (input) integer
                     92: *          The leading dimension of Z just as declared in the
                     93: *          calling subroutine.  1 .LE. LDZ.
                     94: *
                     95: *     NS      (output) integer
                     96: *          The number of unconverged (ie approximate) eigenvalues
                     97: *          returned in SR and SI that may be used as shifts by the
                     98: *          calling subroutine.
                     99: *
                    100: *     ND      (output) integer
                    101: *          The number of converged eigenvalues uncovered by this
                    102: *          subroutine.
                    103: *
                    104: *     SR      (output) DOUBLE PRECISION array, dimension KBOT
                    105: *     SI      (output) DOUBLE PRECISION array, dimension KBOT
                    106: *          On output, the real and imaginary parts of approximate
                    107: *          eigenvalues that may be used for shifts are stored in
                    108: *          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
                    109: *          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
                    110: *          The real and imaginary parts of converged eigenvalues
                    111: *          are stored in SR(KBOT-ND+1) through SR(KBOT) and
                    112: *          SI(KBOT-ND+1) through SI(KBOT), respectively.
                    113: *
                    114: *     V       (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
                    115: *          An NW-by-NW work array.
                    116: *
                    117: *     LDV     (input) integer scalar
                    118: *          The leading dimension of V just as declared in the
                    119: *          calling subroutine.  NW .LE. LDV
                    120: *
                    121: *     NH      (input) integer scalar
                    122: *          The number of columns of T.  NH.GE.NW.
                    123: *
                    124: *     T       (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
                    125: *
                    126: *     LDT     (input) integer
                    127: *          The leading dimension of T just as declared in the
                    128: *          calling subroutine.  NW .LE. LDT
                    129: *
                    130: *     NV      (input) integer
                    131: *          The number of rows of work array WV available for
                    132: *          workspace.  NV.GE.NW.
                    133: *
                    134: *     WV      (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
                    135: *
                    136: *     LDWV    (input) integer
                    137: *          The leading dimension of W just as declared in the
                    138: *          calling subroutine.  NW .LE. LDV
                    139: *
                    140: *     WORK    (workspace) DOUBLE PRECISION array, dimension LWORK.
                    141: *          On exit, WORK(1) is set to an estimate of the optimal value
                    142: *          of LWORK for the given values of N, NW, KTOP and KBOT.
                    143: *
                    144: *     LWORK   (input) integer
                    145: *          The dimension of the work array WORK.  LWORK = 2*NW
                    146: *          suffices, but greater efficiency may result from larger
                    147: *          values of LWORK.
                    148: *
                    149: *          If LWORK = -1, then a workspace query is assumed; DLAQR2
                    150: *          only estimates the optimal workspace size for the given
                    151: *          values of N, NW, KTOP and KBOT.  The estimate is returned
                    152: *          in WORK(1).  No error message related to LWORK is issued
                    153: *          by XERBLA.  Neither H nor Z are accessed.
                    154: *
                    155: *     ================================================================
                    156: *     Based on contributions by
                    157: *        Karen Braman and Ralph Byers, Department of Mathematics,
                    158: *        University of Kansas, USA
                    159: *
                    160: *     ================================================================
                    161: *     .. Parameters ..
                    162:       DOUBLE PRECISION   ZERO, ONE
                    163:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    167:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    168:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    169:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
                    170:      $                   LWKOPT
                    171:       LOGICAL            BULGE, SORTED
                    172: *     ..
                    173: *     .. External Functions ..
                    174:       DOUBLE PRECISION   DLAMCH
                    175:       EXTERNAL           DLAMCH
                    176: *     ..
                    177: *     .. External Subroutines ..
                    178:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    179:      $                   DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
                    180: *     ..
                    181: *     .. Intrinsic Functions ..
                    182:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    183: *     ..
                    184: *     .. Executable Statements ..
                    185: *
                    186: *     ==== Estimate optimal workspace. ====
                    187: *
                    188:       JW = MIN( NW, KBOT-KTOP+1 )
                    189:       IF( JW.LE.2 ) THEN
                    190:          LWKOPT = 1
                    191:       ELSE
                    192: *
                    193: *        ==== Workspace query call to DGEHRD ====
                    194: *
                    195:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    196:          LWK1 = INT( WORK( 1 ) )
                    197: *
                    198: *        ==== Workspace query call to DORMHR ====
                    199: *
                    200:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    201:      $                WORK, -1, INFO )
                    202:          LWK2 = INT( WORK( 1 ) )
                    203: *
                    204: *        ==== Optimal workspace ====
                    205: *
                    206:          LWKOPT = JW + MAX( LWK1, LWK2 )
                    207:       END IF
                    208: *
                    209: *     ==== Quick return in case of workspace query. ====
                    210: *
                    211:       IF( LWORK.EQ.-1 ) THEN
                    212:          WORK( 1 ) = DBLE( LWKOPT )
                    213:          RETURN
                    214:       END IF
                    215: *
                    216: *     ==== Nothing to do ...
                    217: *     ... for an empty active block ... ====
                    218:       NS = 0
                    219:       ND = 0
                    220:       WORK( 1 ) = ONE
                    221:       IF( KTOP.GT.KBOT )
                    222:      $   RETURN
                    223: *     ... nor for an empty deflation window. ====
                    224:       IF( NW.LT.1 )
                    225:      $   RETURN
                    226: *
                    227: *     ==== Machine constants ====
                    228: *
                    229:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    230:       SAFMAX = ONE / SAFMIN
                    231:       CALL DLABAD( SAFMIN, SAFMAX )
                    232:       ULP = DLAMCH( 'PRECISION' )
                    233:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    234: *
                    235: *     ==== Setup deflation window ====
                    236: *
                    237:       JW = MIN( NW, KBOT-KTOP+1 )
                    238:       KWTOP = KBOT - JW + 1
                    239:       IF( KWTOP.EQ.KTOP ) THEN
                    240:          S = ZERO
                    241:       ELSE
                    242:          S = H( KWTOP, KWTOP-1 )
                    243:       END IF
                    244: *
                    245:       IF( KBOT.EQ.KWTOP ) THEN
                    246: *
                    247: *        ==== 1-by-1 deflation window: not much to do ====
                    248: *
                    249:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    250:          SI( KWTOP ) = ZERO
                    251:          NS = 1
                    252:          ND = 0
                    253:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    254:      $        THEN
                    255:             NS = 0
                    256:             ND = 1
                    257:             IF( KWTOP.GT.KTOP )
                    258:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    259:          END IF
                    260:          WORK( 1 ) = ONE
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     ==== Convert to spike-triangular form.  (In case of a
                    265: *     .    rare QR failure, this routine continues to do
                    266: *     .    aggressive early deflation using that part of
                    267: *     .    the deflation window that converged using INFQR
                    268: *     .    here and there to keep track.) ====
                    269: *
                    270:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    271:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    272: *
                    273:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    274:       CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    275:      $             SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    276: *
                    277: *     ==== DTREXC needs a clean margin near the diagonal ====
                    278: *
                    279:       DO 10 J = 1, JW - 3
                    280:          T( J+2, J ) = ZERO
                    281:          T( J+3, J ) = ZERO
                    282:    10 CONTINUE
                    283:       IF( JW.GT.2 )
                    284:      $   T( JW, JW-2 ) = ZERO
                    285: *
                    286: *     ==== Deflation detection loop ====
                    287: *
                    288:       NS = JW
                    289:       ILST = INFQR + 1
                    290:    20 CONTINUE
                    291:       IF( ILST.LE.NS ) THEN
                    292:          IF( NS.EQ.1 ) THEN
                    293:             BULGE = .FALSE.
                    294:          ELSE
                    295:             BULGE = T( NS, NS-1 ).NE.ZERO
                    296:          END IF
                    297: *
                    298: *        ==== Small spike tip test for deflation ====
                    299: *
                    300:          IF( .NOT.BULGE ) THEN
                    301: *
                    302: *           ==== Real eigenvalue ====
                    303: *
                    304:             FOO = ABS( T( NS, NS ) )
                    305:             IF( FOO.EQ.ZERO )
                    306:      $         FOO = ABS( S )
                    307:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    308: *
                    309: *              ==== Deflatable ====
                    310: *
                    311:                NS = NS - 1
                    312:             ELSE
                    313: *
                    314: *              ==== Undeflatable.   Move it up out of the way.
                    315: *              .    (DTREXC can not fail in this case.) ====
                    316: *
                    317:                IFST = NS
                    318:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    319:      $                      INFO )
                    320:                ILST = ILST + 1
                    321:             END IF
                    322:          ELSE
                    323: *
                    324: *           ==== Complex conjugate pair ====
                    325: *
                    326:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    327:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    328:             IF( FOO.EQ.ZERO )
                    329:      $         FOO = ABS( S )
                    330:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    331:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    332: *
                    333: *              ==== Deflatable ====
                    334: *
                    335:                NS = NS - 2
                    336:             ELSE
                    337: *
                    338: *              ==== Undeflatable. Move them up out of the way.
                    339: *              .    Fortunately, DTREXC does the right thing with
                    340: *              .    ILST in case of a rare exchange failure. ====
                    341: *
                    342:                IFST = NS
                    343:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    344:      $                      INFO )
                    345:                ILST = ILST + 2
                    346:             END IF
                    347:          END IF
                    348: *
                    349: *        ==== End deflation detection loop ====
                    350: *
                    351:          GO TO 20
                    352:       END IF
                    353: *
                    354: *        ==== Return to Hessenberg form ====
                    355: *
                    356:       IF( NS.EQ.0 )
                    357:      $   S = ZERO
                    358: *
                    359:       IF( NS.LT.JW ) THEN
                    360: *
                    361: *        ==== sorting diagonal blocks of T improves accuracy for
                    362: *        .    graded matrices.  Bubble sort deals well with
                    363: *        .    exchange failures. ====
                    364: *
                    365:          SORTED = .false.
                    366:          I = NS + 1
                    367:    30    CONTINUE
                    368:          IF( SORTED )
                    369:      $      GO TO 50
                    370:          SORTED = .true.
                    371: *
                    372:          KEND = I - 1
                    373:          I = INFQR + 1
                    374:          IF( I.EQ.NS ) THEN
                    375:             K = I + 1
                    376:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    377:             K = I + 1
                    378:          ELSE
                    379:             K = I + 2
                    380:          END IF
                    381:    40    CONTINUE
                    382:          IF( K.LE.KEND ) THEN
                    383:             IF( K.EQ.I+1 ) THEN
                    384:                EVI = ABS( T( I, I ) )
                    385:             ELSE
                    386:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    387:      $               SQRT( ABS( T( I, I+1 ) ) )
                    388:             END IF
                    389: *
                    390:             IF( K.EQ.KEND ) THEN
                    391:                EVK = ABS( T( K, K ) )
                    392:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    393:                EVK = ABS( T( K, K ) )
                    394:             ELSE
                    395:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    396:      $               SQRT( ABS( T( K, K+1 ) ) )
                    397:             END IF
                    398: *
                    399:             IF( EVI.GE.EVK ) THEN
                    400:                I = K
                    401:             ELSE
                    402:                SORTED = .false.
                    403:                IFST = I
                    404:                ILST = K
                    405:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    406:      $                      INFO )
                    407:                IF( INFO.EQ.0 ) THEN
                    408:                   I = ILST
                    409:                ELSE
                    410:                   I = K
                    411:                END IF
                    412:             END IF
                    413:             IF( I.EQ.KEND ) THEN
                    414:                K = I + 1
                    415:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    416:                K = I + 1
                    417:             ELSE
                    418:                K = I + 2
                    419:             END IF
                    420:             GO TO 40
                    421:          END IF
                    422:          GO TO 30
                    423:    50    CONTINUE
                    424:       END IF
                    425: *
                    426: *     ==== Restore shift/eigenvalue array from T ====
                    427: *
                    428:       I = JW
                    429:    60 CONTINUE
                    430:       IF( I.GE.INFQR+1 ) THEN
                    431:          IF( I.EQ.INFQR+1 ) THEN
                    432:             SR( KWTOP+I-1 ) = T( I, I )
                    433:             SI( KWTOP+I-1 ) = ZERO
                    434:             I = I - 1
                    435:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    436:             SR( KWTOP+I-1 ) = T( I, I )
                    437:             SI( KWTOP+I-1 ) = ZERO
                    438:             I = I - 1
                    439:          ELSE
                    440:             AA = T( I-1, I-1 )
                    441:             CC = T( I, I-1 )
                    442:             BB = T( I-1, I )
                    443:             DD = T( I, I )
                    444:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    445:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    446:      $                   SI( KWTOP+I-1 ), CS, SN )
                    447:             I = I - 2
                    448:          END IF
                    449:          GO TO 60
                    450:       END IF
                    451: *
                    452:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    453:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    454: *
                    455: *           ==== Reflect spike back into lower triangle ====
                    456: *
                    457:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    458:             BETA = WORK( 1 )
                    459:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    460:             WORK( 1 ) = ONE
                    461: *
                    462:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    463: *
                    464:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    465:      $                  WORK( JW+1 ) )
                    466:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    467:      $                  WORK( JW+1 ) )
                    468:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    469:      $                  WORK( JW+1 ) )
                    470: *
                    471:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    472:      $                   LWORK-JW, INFO )
                    473:          END IF
                    474: *
                    475: *        ==== Copy updated reduced window into place ====
                    476: *
                    477:          IF( KWTOP.GT.1 )
                    478:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    479:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    480:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    481:      $               LDH+1 )
                    482: *
                    483: *        ==== Accumulate orthogonal matrix in order update
                    484: *        .    H and Z, if requested.  ====
                    485: *
                    486:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    487:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    488:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    489: *
                    490: *        ==== Update vertical slab in H ====
                    491: *
                    492:          IF( WANTT ) THEN
                    493:             LTOP = 1
                    494:          ELSE
                    495:             LTOP = KTOP
                    496:          END IF
                    497:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    498:             KLN = MIN( NV, KWTOP-KROW )
                    499:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    500:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    501:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    502:    70    CONTINUE
                    503: *
                    504: *        ==== Update horizontal slab in H ====
                    505: *
                    506:          IF( WANTT ) THEN
                    507:             DO 80 KCOL = KBOT + 1, N, NH
                    508:                KLN = MIN( NH, N-KCOL+1 )
                    509:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    510:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    511:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    512:      $                      LDH )
                    513:    80       CONTINUE
                    514:          END IF
                    515: *
                    516: *        ==== Update vertical slab in Z ====
                    517: *
                    518:          IF( WANTZ ) THEN
                    519:             DO 90 KROW = ILOZ, IHIZ, NV
                    520:                KLN = MIN( NV, IHIZ-KROW+1 )
                    521:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    522:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    523:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    524:      $                      LDZ )
                    525:    90       CONTINUE
                    526:          END IF
                    527:       END IF
                    528: *
                    529: *     ==== Return the number of deflations ... ====
                    530: *
                    531:       ND = JW - NS
                    532: *
                    533: *     ==== ... and the number of shifts. (Subtracting
                    534: *     .    INFQR from the spike length takes care
                    535: *     .    of the case of a rare QR failure while
                    536: *     .    calculating eigenvalues of the deflation
                    537: *     .    window.)  ====
                    538: *
                    539:       NS = NS - INFQR
                    540: *
                    541: *      ==== Return optimal workspace. ====
                    542: *
                    543:       WORK( 1 ) = DBLE( LWKOPT )
                    544: *
                    545: *     ==== End of DLAQR2 ====
                    546: *
                    547:       END

CVSweb interface <joel.bertrand@systella.fr>