Annotation of rpl/lapack/lapack/dlaqr2.f, revision 1.10

1.9       bertrand    1: *> \brief \b DLAQR2
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAQR2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                     22: *                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                     23: *                          LDT, NV, WV, LDWV, WORK, LWORK )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     28: *       LOGICAL            WANTT, WANTZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                     32: *      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                     33: *      $                   Z( LDZ, * )
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *>    DLAQR2 is identical to DLAQR3 except that it avoids
                     43: *>    recursion by calling DLAHQR instead of DLAQR4.
                     44: *>
                     45: *>    Aggressive early deflation:
                     46: *>
                     47: *>    This subroutine accepts as input an upper Hessenberg matrix
                     48: *>    H and performs an orthogonal similarity transformation
                     49: *>    designed to detect and deflate fully converged eigenvalues from
                     50: *>    a trailing principal submatrix.  On output H has been over-
                     51: *>    written by a new Hessenberg matrix that is a perturbation of
                     52: *>    an orthogonal similarity transformation of H.  It is to be
                     53: *>    hoped that the final version of H has many zero subdiagonal
                     54: *>    entries.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] WANTT
                     61: *> \verbatim
                     62: *>          WANTT is LOGICAL
                     63: *>          If .TRUE., then the Hessenberg matrix H is fully updated
                     64: *>          so that the quasi-triangular Schur factor may be
                     65: *>          computed (in cooperation with the calling subroutine).
                     66: *>          If .FALSE., then only enough of H is updated to preserve
                     67: *>          the eigenvalues.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] WANTZ
                     71: *> \verbatim
                     72: *>          WANTZ is LOGICAL
                     73: *>          If .TRUE., then the orthogonal matrix Z is updated so
                     74: *>          so that the orthogonal Schur factor may be computed
                     75: *>          (in cooperation with the calling subroutine).
                     76: *>          If .FALSE., then Z is not referenced.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
                     83: *>          order of the orthogonal matrix Z.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] KTOP
                     87: *> \verbatim
                     88: *>          KTOP is INTEGER
                     89: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     90: *>          KBOT and KTOP together determine an isolated block
                     91: *>          along the diagonal of the Hessenberg matrix.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] KBOT
                     95: *> \verbatim
                     96: *>          KBOT is INTEGER
                     97: *>          It is assumed without a check that either
                     98: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     99: *>          determine an isolated block along the diagonal of the
                    100: *>          Hessenberg matrix.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] NW
                    104: *> \verbatim
                    105: *>          NW is INTEGER
                    106: *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in,out] H
                    110: *> \verbatim
                    111: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                    112: *>          On input the initial N-by-N section of H stores the
                    113: *>          Hessenberg matrix undergoing aggressive early deflation.
                    114: *>          On output H has been transformed by an orthogonal
                    115: *>          similarity transformation, perturbed, and the returned
                    116: *>          to Hessenberg form that (it is to be hoped) has some
                    117: *>          zero subdiagonal entries.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDH
                    121: *> \verbatim
                    122: *>          LDH is integer
                    123: *>          Leading dimension of H just as declared in the calling
                    124: *>          subroutine.  N .LE. LDH
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] ILOZ
                    128: *> \verbatim
                    129: *>          ILOZ is INTEGER
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] IHIZ
                    133: *> \verbatim
                    134: *>          IHIZ is INTEGER
                    135: *>          Specify the rows of Z to which transformations must be
                    136: *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in,out] Z
                    140: *> \verbatim
                    141: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    142: *>          IF WANTZ is .TRUE., then on output, the orthogonal
                    143: *>          similarity transformation mentioned above has been
                    144: *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
                    145: *>          If WANTZ is .FALSE., then Z is unreferenced.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDZ
                    149: *> \verbatim
                    150: *>          LDZ is integer
                    151: *>          The leading dimension of Z just as declared in the
                    152: *>          calling subroutine.  1 .LE. LDZ.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] NS
                    156: *> \verbatim
                    157: *>          NS is integer
                    158: *>          The number of unconverged (ie approximate) eigenvalues
                    159: *>          returned in SR and SI that may be used as shifts by the
                    160: *>          calling subroutine.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] ND
                    164: *> \verbatim
                    165: *>          ND is integer
                    166: *>          The number of converged eigenvalues uncovered by this
                    167: *>          subroutine.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] SR
                    171: *> \verbatim
                    172: *>          SR is DOUBLE PRECISION array, dimension (KBOT)
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] SI
                    176: *> \verbatim
                    177: *>          SI is DOUBLE PRECISION array, dimension (KBOT)
                    178: *>          On output, the real and imaginary parts of approximate
                    179: *>          eigenvalues that may be used for shifts are stored in
                    180: *>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
                    181: *>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
                    182: *>          The real and imaginary parts of converged eigenvalues
                    183: *>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
                    184: *>          SI(KBOT-ND+1) through SI(KBOT), respectively.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] V
                    188: *> \verbatim
                    189: *>          V is DOUBLE PRECISION array, dimension (LDV,NW)
                    190: *>          An NW-by-NW work array.
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[in] LDV
                    194: *> \verbatim
                    195: *>          LDV is integer scalar
                    196: *>          The leading dimension of V just as declared in the
                    197: *>          calling subroutine.  NW .LE. LDV
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] NH
                    201: *> \verbatim
                    202: *>          NH is integer scalar
                    203: *>          The number of columns of T.  NH.GE.NW.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] T
                    207: *> \verbatim
                    208: *>          T is DOUBLE PRECISION array, dimension (LDT,NW)
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in] LDT
                    212: *> \verbatim
                    213: *>          LDT is integer
                    214: *>          The leading dimension of T just as declared in the
                    215: *>          calling subroutine.  NW .LE. LDT
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[in] NV
                    219: *> \verbatim
                    220: *>          NV is integer
                    221: *>          The number of rows of work array WV available for
                    222: *>          workspace.  NV.GE.NW.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] WV
                    226: *> \verbatim
                    227: *>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[in] LDWV
                    231: *> \verbatim
                    232: *>          LDWV is integer
                    233: *>          The leading dimension of W just as declared in the
                    234: *>          calling subroutine.  NW .LE. LDV
                    235: *> \endverbatim
                    236: *>
                    237: *> \param[out] WORK
                    238: *> \verbatim
                    239: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    240: *>          On exit, WORK(1) is set to an estimate of the optimal value
                    241: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[in] LWORK
                    245: *> \verbatim
                    246: *>          LWORK is integer
                    247: *>          The dimension of the work array WORK.  LWORK = 2*NW
                    248: *>          suffices, but greater efficiency may result from larger
                    249: *>          values of LWORK.
                    250: *>
                    251: *>          If LWORK = -1, then a workspace query is assumed; DLAQR2
                    252: *>          only estimates the optimal workspace size for the given
                    253: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
                    254: *>          in WORK(1).  No error message related to LWORK is issued
                    255: *>          by XERBLA.  Neither H nor Z are accessed.
                    256: *> \endverbatim
                    257: *
                    258: *  Authors:
                    259: *  ========
                    260: *
                    261: *> \author Univ. of Tennessee 
                    262: *> \author Univ. of California Berkeley 
                    263: *> \author Univ. of Colorado Denver 
                    264: *> \author NAG Ltd. 
                    265: *
                    266: *> \date November 2011
                    267: *
                    268: *> \ingroup doubleOTHERauxiliary
                    269: *
                    270: *> \par Contributors:
                    271: *  ==================
                    272: *>
                    273: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    274: *>       University of Kansas, USA
                    275: *>
                    276: *  =====================================================================
1.1       bertrand  277:       SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    278:      $                   IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
                    279:      $                   LDT, NV, WV, LDWV, WORK, LWORK )
                    280: *
1.9       bertrand  281: *  -- LAPACK auxiliary routine (version 3.4.0) --
                    282: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    283: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    284: *     November 2011
1.1       bertrand  285: *
                    286: *     .. Scalar Arguments ..
                    287:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    288:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    289:       LOGICAL            WANTT, WANTZ
                    290: *     ..
                    291: *     .. Array Arguments ..
                    292:       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
                    293:      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
                    294:      $                   Z( LDZ, * )
                    295: *     ..
                    296: *
1.9       bertrand  297: *  ================================================================
1.1       bertrand  298: *     .. Parameters ..
                    299:       DOUBLE PRECISION   ZERO, ONE
                    300:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    301: *     ..
                    302: *     .. Local Scalars ..
                    303:       DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
                    304:      $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
                    305:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
                    306:      $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
                    307:      $                   LWKOPT
                    308:       LOGICAL            BULGE, SORTED
                    309: *     ..
                    310: *     .. External Functions ..
                    311:       DOUBLE PRECISION   DLAMCH
                    312:       EXTERNAL           DLAMCH
                    313: *     ..
                    314: *     .. External Subroutines ..
                    315:       EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
                    316:      $                   DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
                    317: *     ..
                    318: *     .. Intrinsic Functions ..
                    319:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
                    320: *     ..
                    321: *     .. Executable Statements ..
                    322: *
                    323: *     ==== Estimate optimal workspace. ====
                    324: *
                    325:       JW = MIN( NW, KBOT-KTOP+1 )
                    326:       IF( JW.LE.2 ) THEN
                    327:          LWKOPT = 1
                    328:       ELSE
                    329: *
                    330: *        ==== Workspace query call to DGEHRD ====
                    331: *
                    332:          CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    333:          LWK1 = INT( WORK( 1 ) )
                    334: *
                    335: *        ==== Workspace query call to DORMHR ====
                    336: *
                    337:          CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    338:      $                WORK, -1, INFO )
                    339:          LWK2 = INT( WORK( 1 ) )
                    340: *
                    341: *        ==== Optimal workspace ====
                    342: *
                    343:          LWKOPT = JW + MAX( LWK1, LWK2 )
                    344:       END IF
                    345: *
                    346: *     ==== Quick return in case of workspace query. ====
                    347: *
                    348:       IF( LWORK.EQ.-1 ) THEN
                    349:          WORK( 1 ) = DBLE( LWKOPT )
                    350:          RETURN
                    351:       END IF
                    352: *
                    353: *     ==== Nothing to do ...
                    354: *     ... for an empty active block ... ====
                    355:       NS = 0
                    356:       ND = 0
                    357:       WORK( 1 ) = ONE
                    358:       IF( KTOP.GT.KBOT )
                    359:      $   RETURN
                    360: *     ... nor for an empty deflation window. ====
                    361:       IF( NW.LT.1 )
                    362:      $   RETURN
                    363: *
                    364: *     ==== Machine constants ====
                    365: *
                    366:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    367:       SAFMAX = ONE / SAFMIN
                    368:       CALL DLABAD( SAFMIN, SAFMAX )
                    369:       ULP = DLAMCH( 'PRECISION' )
                    370:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    371: *
                    372: *     ==== Setup deflation window ====
                    373: *
                    374:       JW = MIN( NW, KBOT-KTOP+1 )
                    375:       KWTOP = KBOT - JW + 1
                    376:       IF( KWTOP.EQ.KTOP ) THEN
                    377:          S = ZERO
                    378:       ELSE
                    379:          S = H( KWTOP, KWTOP-1 )
                    380:       END IF
                    381: *
                    382:       IF( KBOT.EQ.KWTOP ) THEN
                    383: *
                    384: *        ==== 1-by-1 deflation window: not much to do ====
                    385: *
                    386:          SR( KWTOP ) = H( KWTOP, KWTOP )
                    387:          SI( KWTOP ) = ZERO
                    388:          NS = 1
                    389:          ND = 0
                    390:          IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
                    391:      $        THEN
                    392:             NS = 0
                    393:             ND = 1
                    394:             IF( KWTOP.GT.KTOP )
                    395:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    396:          END IF
                    397:          WORK( 1 ) = ONE
                    398:          RETURN
                    399:       END IF
                    400: *
                    401: *     ==== Convert to spike-triangular form.  (In case of a
                    402: *     .    rare QR failure, this routine continues to do
                    403: *     .    aggressive early deflation using that part of
                    404: *     .    the deflation window that converged using INFQR
                    405: *     .    here and there to keep track.) ====
                    406: *
                    407:       CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    408:       CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    409: *
                    410:       CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    411:       CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
                    412:      $             SI( KWTOP ), 1, JW, V, LDV, INFQR )
                    413: *
                    414: *     ==== DTREXC needs a clean margin near the diagonal ====
                    415: *
                    416:       DO 10 J = 1, JW - 3
                    417:          T( J+2, J ) = ZERO
                    418:          T( J+3, J ) = ZERO
                    419:    10 CONTINUE
                    420:       IF( JW.GT.2 )
                    421:      $   T( JW, JW-2 ) = ZERO
                    422: *
                    423: *     ==== Deflation detection loop ====
                    424: *
                    425:       NS = JW
                    426:       ILST = INFQR + 1
                    427:    20 CONTINUE
                    428:       IF( ILST.LE.NS ) THEN
                    429:          IF( NS.EQ.1 ) THEN
                    430:             BULGE = .FALSE.
                    431:          ELSE
                    432:             BULGE = T( NS, NS-1 ).NE.ZERO
                    433:          END IF
                    434: *
                    435: *        ==== Small spike tip test for deflation ====
                    436: *
                    437:          IF( .NOT.BULGE ) THEN
                    438: *
                    439: *           ==== Real eigenvalue ====
                    440: *
                    441:             FOO = ABS( T( NS, NS ) )
                    442:             IF( FOO.EQ.ZERO )
                    443:      $         FOO = ABS( S )
                    444:             IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
                    445: *
                    446: *              ==== Deflatable ====
                    447: *
                    448:                NS = NS - 1
                    449:             ELSE
                    450: *
                    451: *              ==== Undeflatable.   Move it up out of the way.
                    452: *              .    (DTREXC can not fail in this case.) ====
                    453: *
                    454:                IFST = NS
                    455:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    456:      $                      INFO )
                    457:                ILST = ILST + 1
                    458:             END IF
                    459:          ELSE
                    460: *
                    461: *           ==== Complex conjugate pair ====
                    462: *
                    463:             FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
                    464:      $            SQRT( ABS( T( NS-1, NS ) ) )
                    465:             IF( FOO.EQ.ZERO )
                    466:      $         FOO = ABS( S )
                    467:             IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
                    468:      $          MAX( SMLNUM, ULP*FOO ) ) THEN
                    469: *
                    470: *              ==== Deflatable ====
                    471: *
                    472:                NS = NS - 2
                    473:             ELSE
                    474: *
                    475: *              ==== Undeflatable. Move them up out of the way.
                    476: *              .    Fortunately, DTREXC does the right thing with
                    477: *              .    ILST in case of a rare exchange failure. ====
                    478: *
                    479:                IFST = NS
                    480:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    481:      $                      INFO )
                    482:                ILST = ILST + 2
                    483:             END IF
                    484:          END IF
                    485: *
                    486: *        ==== End deflation detection loop ====
                    487: *
                    488:          GO TO 20
                    489:       END IF
                    490: *
                    491: *        ==== Return to Hessenberg form ====
                    492: *
                    493:       IF( NS.EQ.0 )
                    494:      $   S = ZERO
                    495: *
                    496:       IF( NS.LT.JW ) THEN
                    497: *
                    498: *        ==== sorting diagonal blocks of T improves accuracy for
                    499: *        .    graded matrices.  Bubble sort deals well with
                    500: *        .    exchange failures. ====
                    501: *
                    502:          SORTED = .false.
                    503:          I = NS + 1
                    504:    30    CONTINUE
                    505:          IF( SORTED )
                    506:      $      GO TO 50
                    507:          SORTED = .true.
                    508: *
                    509:          KEND = I - 1
                    510:          I = INFQR + 1
                    511:          IF( I.EQ.NS ) THEN
                    512:             K = I + 1
                    513:          ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    514:             K = I + 1
                    515:          ELSE
                    516:             K = I + 2
                    517:          END IF
                    518:    40    CONTINUE
                    519:          IF( K.LE.KEND ) THEN
                    520:             IF( K.EQ.I+1 ) THEN
                    521:                EVI = ABS( T( I, I ) )
                    522:             ELSE
                    523:                EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
                    524:      $               SQRT( ABS( T( I, I+1 ) ) )
                    525:             END IF
                    526: *
                    527:             IF( K.EQ.KEND ) THEN
                    528:                EVK = ABS( T( K, K ) )
                    529:             ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
                    530:                EVK = ABS( T( K, K ) )
                    531:             ELSE
                    532:                EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
                    533:      $               SQRT( ABS( T( K, K+1 ) ) )
                    534:             END IF
                    535: *
                    536:             IF( EVI.GE.EVK ) THEN
                    537:                I = K
                    538:             ELSE
                    539:                SORTED = .false.
                    540:                IFST = I
                    541:                ILST = K
                    542:                CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
                    543:      $                      INFO )
                    544:                IF( INFO.EQ.0 ) THEN
                    545:                   I = ILST
                    546:                ELSE
                    547:                   I = K
                    548:                END IF
                    549:             END IF
                    550:             IF( I.EQ.KEND ) THEN
                    551:                K = I + 1
                    552:             ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
                    553:                K = I + 1
                    554:             ELSE
                    555:                K = I + 2
                    556:             END IF
                    557:             GO TO 40
                    558:          END IF
                    559:          GO TO 30
                    560:    50    CONTINUE
                    561:       END IF
                    562: *
                    563: *     ==== Restore shift/eigenvalue array from T ====
                    564: *
                    565:       I = JW
                    566:    60 CONTINUE
                    567:       IF( I.GE.INFQR+1 ) THEN
                    568:          IF( I.EQ.INFQR+1 ) THEN
                    569:             SR( KWTOP+I-1 ) = T( I, I )
                    570:             SI( KWTOP+I-1 ) = ZERO
                    571:             I = I - 1
                    572:          ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
                    573:             SR( KWTOP+I-1 ) = T( I, I )
                    574:             SI( KWTOP+I-1 ) = ZERO
                    575:             I = I - 1
                    576:          ELSE
                    577:             AA = T( I-1, I-1 )
                    578:             CC = T( I, I-1 )
                    579:             BB = T( I-1, I )
                    580:             DD = T( I, I )
                    581:             CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
                    582:      $                   SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
                    583:      $                   SI( KWTOP+I-1 ), CS, SN )
                    584:             I = I - 2
                    585:          END IF
                    586:          GO TO 60
                    587:       END IF
                    588: *
                    589:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    590:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    591: *
                    592: *           ==== Reflect spike back into lower triangle ====
                    593: *
                    594:             CALL DCOPY( NS, V, LDV, WORK, 1 )
                    595:             BETA = WORK( 1 )
                    596:             CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    597:             WORK( 1 ) = ONE
                    598: *
                    599:             CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    600: *
                    601:             CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
                    602:      $                  WORK( JW+1 ) )
                    603:             CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    604:      $                  WORK( JW+1 ) )
                    605:             CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    606:      $                  WORK( JW+1 ) )
                    607: *
                    608:             CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    609:      $                   LWORK-JW, INFO )
                    610:          END IF
                    611: *
                    612: *        ==== Copy updated reduced window into place ====
                    613: *
                    614:          IF( KWTOP.GT.1 )
                    615:      $      H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
                    616:          CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    617:          CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    618:      $               LDH+1 )
                    619: *
                    620: *        ==== Accumulate orthogonal matrix in order update
                    621: *        .    H and Z, if requested.  ====
                    622: *
                    623:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    624:      $      CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    625:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    626: *
                    627: *        ==== Update vertical slab in H ====
                    628: *
                    629:          IF( WANTT ) THEN
                    630:             LTOP = 1
                    631:          ELSE
                    632:             LTOP = KTOP
                    633:          END IF
                    634:          DO 70 KROW = LTOP, KWTOP - 1, NV
                    635:             KLN = MIN( NV, KWTOP-KROW )
                    636:             CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    637:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    638:             CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    639:    70    CONTINUE
                    640: *
                    641: *        ==== Update horizontal slab in H ====
                    642: *
                    643:          IF( WANTT ) THEN
                    644:             DO 80 KCOL = KBOT + 1, N, NH
                    645:                KLN = MIN( NH, N-KCOL+1 )
                    646:                CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    647:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    648:                CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    649:      $                      LDH )
                    650:    80       CONTINUE
                    651:          END IF
                    652: *
                    653: *        ==== Update vertical slab in Z ====
                    654: *
                    655:          IF( WANTZ ) THEN
                    656:             DO 90 KROW = ILOZ, IHIZ, NV
                    657:                KLN = MIN( NV, IHIZ-KROW+1 )
                    658:                CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    659:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    660:                CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    661:      $                      LDZ )
                    662:    90       CONTINUE
                    663:          END IF
                    664:       END IF
                    665: *
                    666: *     ==== Return the number of deflations ... ====
                    667: *
                    668:       ND = JW - NS
                    669: *
                    670: *     ==== ... and the number of shifts. (Subtracting
                    671: *     .    INFQR from the spike length takes care
                    672: *     .    of the case of a rare QR failure while
                    673: *     .    calculating eigenvalues of the deflation
                    674: *     .    window.)  ====
                    675: *
                    676:       NS = NS - INFQR
                    677: *
                    678: *      ==== Return optimal workspace. ====
                    679: *
                    680:       WORK( 1 ) = DBLE( LWKOPT )
                    681: *
                    682: *     ==== End of DLAQR2 ====
                    683: *
                    684:       END

CVSweb interface <joel.bertrand@systella.fr>