File:  [local] / rpl / lapack / lapack / dlaqr0.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:24 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAQR0 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr0.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr0.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr0.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
   22: *                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
   30: *      $                   Z( LDZ, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *>    DLAQR0 computes the eigenvalues of a Hessenberg matrix H
   40: *>    and, optionally, the matrices T and Z from the Schur decomposition
   41: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
   42: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
   43: *>
   44: *>    Optionally Z may be postmultiplied into an input orthogonal
   45: *>    matrix Q so that this routine can give the Schur factorization
   46: *>    of a matrix A which has been reduced to the Hessenberg form H
   47: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] WANTT
   54: *> \verbatim
   55: *>          WANTT is LOGICAL
   56: *>          = .TRUE. : the full Schur form T is required;
   57: *>          = .FALSE.: only eigenvalues are required.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] WANTZ
   61: *> \verbatim
   62: *>          WANTZ is LOGICAL
   63: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   64: *>          = .FALSE.: Schur vectors are not required.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>           The order of the matrix H.  N .GE. 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ILO
   74: *> \verbatim
   75: *>          ILO is INTEGER
   76: *> \endverbatim
   77: *>
   78: *> \param[in] IHI
   79: *> \verbatim
   80: *>          IHI is INTEGER
   81: *>           It is assumed that H is already upper triangular in rows
   82: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
   83: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   84: *>           previous call to DGEBAL, and then passed to DGEHRD when the
   85: *>           matrix output by DGEBAL is reduced to Hessenberg form.
   86: *>           Otherwise, ILO and IHI should be set to 1 and N,
   87: *>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
   88: *>           If N = 0, then ILO = 1 and IHI = 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] H
   92: *> \verbatim
   93: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
   94: *>           On entry, the upper Hessenberg matrix H.
   95: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
   96: *>           the upper quasi-triangular matrix T from the Schur
   97: *>           decomposition (the Schur form); 2-by-2 diagonal blocks
   98: *>           (corresponding to complex conjugate pairs of eigenvalues)
   99: *>           are returned in standard form, with H(i,i) = H(i+1,i+1)
  100: *>           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
  101: *>           .FALSE., then the contents of H are unspecified on exit.
  102: *>           (The output value of H when INFO.GT.0 is given under the
  103: *>           description of INFO below.)
  104: *>
  105: *>           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
  106: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDH
  110: *> \verbatim
  111: *>          LDH is INTEGER
  112: *>           The leading dimension of the array H. LDH .GE. max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WR
  116: *> \verbatim
  117: *>          WR is DOUBLE PRECISION array, dimension (IHI)
  118: *> \endverbatim
  119: *>
  120: *> \param[out] WI
  121: *> \verbatim
  122: *>          WI is DOUBLE PRECISION array, dimension (IHI)
  123: *>           The real and imaginary parts, respectively, of the computed
  124: *>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
  125: *>           and WI(ILO:IHI). If two eigenvalues are computed as a
  126: *>           complex conjugate pair, they are stored in consecutive
  127: *>           elements of WR and WI, say the i-th and (i+1)th, with
  128: *>           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
  129: *>           the eigenvalues are stored in the same order as on the
  130: *>           diagonal of the Schur form returned in H, with
  131: *>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
  132: *>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
  133: *>           WI(i+1) = -WI(i).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] ILOZ
  137: *> \verbatim
  138: *>          ILOZ is INTEGER
  139: *> \endverbatim
  140: *>
  141: *> \param[in] IHIZ
  142: *> \verbatim
  143: *>          IHIZ is INTEGER
  144: *>           Specify the rows of Z to which transformations must be
  145: *>           applied if WANTZ is .TRUE..
  146: *>           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] Z
  150: *> \verbatim
  151: *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
  152: *>           If WANTZ is .FALSE., then Z is not referenced.
  153: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  154: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  155: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  156: *>           (The output value of Z when INFO.GT.0 is given under
  157: *>           the description of INFO below.)
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDZ
  161: *> \verbatim
  162: *>          LDZ is INTEGER
  163: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
  164: *>           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] WORK
  168: *> \verbatim
  169: *>          WORK is DOUBLE PRECISION array, dimension LWORK
  170: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
  171: *>           the optimal value for LWORK.
  172: *> \endverbatim
  173: *>
  174: *> \param[in] LWORK
  175: *> \verbatim
  176: *>          LWORK is INTEGER
  177: *>           The dimension of the array WORK.  LWORK .GE. max(1,N)
  178: *>           is sufficient, but LWORK typically as large as 6*N may
  179: *>           be required for optimal performance.  A workspace query
  180: *>           to determine the optimal workspace size is recommended.
  181: *>
  182: *>           If LWORK = -1, then DLAQR0 does a workspace query.
  183: *>           In this case, DLAQR0 checks the input parameters and
  184: *>           estimates the optimal workspace size for the given
  185: *>           values of N, ILO and IHI.  The estimate is returned
  186: *>           in WORK(1).  No error message related to LWORK is
  187: *>           issued by XERBLA.  Neither H nor Z are accessed.
  188: *> \endverbatim
  189: *>
  190: *> \param[out] INFO
  191: *> \verbatim
  192: *>          INFO is INTEGER
  193: *>             =  0:  successful exit
  194: *>           .GT. 0:  if INFO = i, DLAQR0 failed to compute all of
  195: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  196: *>                and WI contain those eigenvalues which have been
  197: *>                successfully computed.  (Failures are rare.)
  198: *>
  199: *>                If INFO .GT. 0 and WANT is .FALSE., then on exit,
  200: *>                the remaining unconverged eigenvalues are the eigen-
  201: *>                values of the upper Hessenberg matrix rows and
  202: *>                columns ILO through INFO of the final, output
  203: *>                value of H.
  204: *>
  205: *>                If INFO .GT. 0 and WANTT is .TRUE., then on exit
  206: *>
  207: *>           (*)  (initial value of H)*U  = U*(final value of H)
  208: *>
  209: *>                where U is an orthogonal matrix.  The final
  210: *>                value of H is upper Hessenberg and quasi-triangular
  211: *>                in rows and columns INFO+1 through IHI.
  212: *>
  213: *>                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  214: *>
  215: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  216: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  217: *>
  218: *>                where U is the orthogonal matrix in (*) (regard-
  219: *>                less of the value of WANTT.)
  220: *>
  221: *>                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
  222: *>                accessed.
  223: *> \endverbatim
  224: *
  225: *> \par Contributors:
  226: *  ==================
  227: *>
  228: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  229: *>       University of Kansas, USA
  230: *
  231: *> \par References:
  232: *  ================
  233: *>
  234: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  235: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  236: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  237: *>       929--947, 2002.
  238: *> \n
  239: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  240: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  241: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  242: *
  243: *  Authors:
  244: *  ========
  245: *
  246: *> \author Univ. of Tennessee 
  247: *> \author Univ. of California Berkeley 
  248: *> \author Univ. of Colorado Denver 
  249: *> \author NAG Ltd. 
  250: *
  251: *> \date September 2012
  252: *
  253: *> \ingroup doubleOTHERauxiliary
  254: *
  255: *  =====================================================================
  256:       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  257:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
  258: *
  259: *  -- LAPACK auxiliary routine (version 3.4.2) --
  260: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  261: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  262: *     September 2012
  263: *
  264: *     .. Scalar Arguments ..
  265:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  266:       LOGICAL            WANTT, WANTZ
  267: *     ..
  268: *     .. Array Arguments ..
  269:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
  270:      $                   Z( LDZ, * )
  271: *     ..
  272: *
  273: *  ================================================================
  274: *
  275: *     .. Parameters ..
  276: *
  277: *     ==== Matrices of order NTINY or smaller must be processed by
  278: *     .    DLAHQR because of insufficient subdiagonal scratch space.
  279: *     .    (This is a hard limit.) ====
  280:       INTEGER            NTINY
  281:       PARAMETER          ( NTINY = 11 )
  282: *
  283: *     ==== Exceptional deflation windows:  try to cure rare
  284: *     .    slow convergence by varying the size of the
  285: *     .    deflation window after KEXNW iterations. ====
  286:       INTEGER            KEXNW
  287:       PARAMETER          ( KEXNW = 5 )
  288: *
  289: *     ==== Exceptional shifts: try to cure rare slow convergence
  290: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  291: *     .    ====
  292:       INTEGER            KEXSH
  293:       PARAMETER          ( KEXSH = 6 )
  294: *
  295: *     ==== The constants WILK1 and WILK2 are used to form the
  296: *     .    exceptional shifts. ====
  297:       DOUBLE PRECISION   WILK1, WILK2
  298:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
  299:       DOUBLE PRECISION   ZERO, ONE
  300:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  301: *     ..
  302: *     .. Local Scalars ..
  303:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
  304:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  305:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  306:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  307:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  308:       LOGICAL            SORTED
  309:       CHARACTER          JBCMPZ*2
  310: *     ..
  311: *     .. External Functions ..
  312:       INTEGER            ILAENV
  313:       EXTERNAL           ILAENV
  314: *     ..
  315: *     .. Local Arrays ..
  316:       DOUBLE PRECISION   ZDUM( 1, 1 )
  317: *     ..
  318: *     .. External Subroutines ..
  319:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
  320: *     ..
  321: *     .. Intrinsic Functions ..
  322:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
  323: *     ..
  324: *     .. Executable Statements ..
  325:       INFO = 0
  326: *
  327: *     ==== Quick return for N = 0: nothing to do. ====
  328: *
  329:       IF( N.EQ.0 ) THEN
  330:          WORK( 1 ) = ONE
  331:          RETURN
  332:       END IF
  333: *
  334:       IF( N.LE.NTINY ) THEN
  335: *
  336: *        ==== Tiny matrices must use DLAHQR. ====
  337: *
  338:          LWKOPT = 1
  339:          IF( LWORK.NE.-1 )
  340:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  341:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
  342:       ELSE
  343: *
  344: *        ==== Use small bulge multi-shift QR with aggressive early
  345: *        .    deflation on larger-than-tiny matrices. ====
  346: *
  347: *        ==== Hope for the best. ====
  348: *
  349:          INFO = 0
  350: *
  351: *        ==== Set up job flags for ILAENV. ====
  352: *
  353:          IF( WANTT ) THEN
  354:             JBCMPZ( 1: 1 ) = 'S'
  355:          ELSE
  356:             JBCMPZ( 1: 1 ) = 'E'
  357:          END IF
  358:          IF( WANTZ ) THEN
  359:             JBCMPZ( 2: 2 ) = 'V'
  360:          ELSE
  361:             JBCMPZ( 2: 2 ) = 'N'
  362:          END IF
  363: *
  364: *        ==== NWR = recommended deflation window size.  At this
  365: *        .    point,  N .GT. NTINY = 11, so there is enough
  366: *        .    subdiagonal workspace for NWR.GE.2 as required.
  367: *        .    (In fact, there is enough subdiagonal space for
  368: *        .    NWR.GE.3.) ====
  369: *
  370:          NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  371:          NWR = MAX( 2, NWR )
  372:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  373: *
  374: *        ==== NSR = recommended number of simultaneous shifts.
  375: *        .    At this point N .GT. NTINY = 11, so there is at
  376: *        .    enough subdiagonal workspace for NSR to be even
  377: *        .    and greater than or equal to two as required. ====
  378: *
  379:          NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  380:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
  381:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  382: *
  383: *        ==== Estimate optimal workspace ====
  384: *
  385: *        ==== Workspace query call to DLAQR3 ====
  386: *
  387:          CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  388:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
  389:      $                N, H, LDH, WORK, -1 )
  390: *
  391: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
  392: *
  393:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  394: *
  395: *        ==== Quick return in case of workspace query. ====
  396: *
  397:          IF( LWORK.EQ.-1 ) THEN
  398:             WORK( 1 ) = DBLE( LWKOPT )
  399:             RETURN
  400:          END IF
  401: *
  402: *        ==== DLAHQR/DLAQR0 crossover point ====
  403: *
  404:          NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  405:          NMIN = MAX( NTINY, NMIN )
  406: *
  407: *        ==== Nibble crossover point ====
  408: *
  409:          NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  410:          NIBBLE = MAX( 0, NIBBLE )
  411: *
  412: *        ==== Accumulate reflections during ttswp?  Use block
  413: *        .    2-by-2 structure during matrix-matrix multiply? ====
  414: *
  415:          KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  416:          KACC22 = MAX( 0, KACC22 )
  417:          KACC22 = MIN( 2, KACC22 )
  418: *
  419: *        ==== NWMAX = the largest possible deflation window for
  420: *        .    which there is sufficient workspace. ====
  421: *
  422:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  423:          NW = NWMAX
  424: *
  425: *        ==== NSMAX = the Largest number of simultaneous shifts
  426: *        .    for which there is sufficient workspace. ====
  427: *
  428:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
  429:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  430: *
  431: *        ==== NDFL: an iteration count restarted at deflation. ====
  432: *
  433:          NDFL = 1
  434: *
  435: *        ==== ITMAX = iteration limit ====
  436: *
  437:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  438: *
  439: *        ==== Last row and column in the active block ====
  440: *
  441:          KBOT = IHI
  442: *
  443: *        ==== Main Loop ====
  444: *
  445:          DO 80 IT = 1, ITMAX
  446: *
  447: *           ==== Done when KBOT falls below ILO ====
  448: *
  449:             IF( KBOT.LT.ILO )
  450:      $         GO TO 90
  451: *
  452: *           ==== Locate active block ====
  453: *
  454:             DO 10 K = KBOT, ILO + 1, -1
  455:                IF( H( K, K-1 ).EQ.ZERO )
  456:      $            GO TO 20
  457:    10       CONTINUE
  458:             K = ILO
  459:    20       CONTINUE
  460:             KTOP = K
  461: *
  462: *           ==== Select deflation window size:
  463: *           .    Typical Case:
  464: *           .      If possible and advisable, nibble the entire
  465: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  466: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  467: *           .      the smaller corresponding subdiagonal entry
  468: *           .      (a heuristic).
  469: *           .
  470: *           .    Exceptional Case:
  471: *           .      If there have been no deflations in KEXNW or
  472: *           .      more iterations, then vary the deflation window
  473: *           .      size.   At first, because, larger windows are,
  474: *           .      in general, more powerful than smaller ones,
  475: *           .      rapidly increase the window to the maximum possible.
  476: *           .      Then, gradually reduce the window size. ====
  477: *
  478:             NH = KBOT - KTOP + 1
  479:             NWUPBD = MIN( NH, NWMAX )
  480:             IF( NDFL.LT.KEXNW ) THEN
  481:                NW = MIN( NWUPBD, NWR )
  482:             ELSE
  483:                NW = MIN( NWUPBD, 2*NW )
  484:             END IF
  485:             IF( NW.LT.NWMAX ) THEN
  486:                IF( NW.GE.NH-1 ) THEN
  487:                   NW = NH
  488:                ELSE
  489:                   KWTOP = KBOT - NW + 1
  490:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
  491:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  492:                END IF
  493:             END IF
  494:             IF( NDFL.LT.KEXNW ) THEN
  495:                NDEC = -1
  496:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  497:                NDEC = NDEC + 1
  498:                IF( NW-NDEC.LT.2 )
  499:      $            NDEC = 0
  500:                NW = NW - NDEC
  501:             END IF
  502: *
  503: *           ==== Aggressive early deflation:
  504: *           .    split workspace under the subdiagonal into
  505: *           .      - an nw-by-nw work array V in the lower
  506: *           .        left-hand-corner,
  507: *           .      - an NW-by-at-least-NW-but-more-is-better
  508: *           .        (NW-by-NHO) horizontal work array along
  509: *           .        the bottom edge,
  510: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  511: *           .        vertical work array along the left-hand-edge.
  512: *           .        ====
  513: *
  514:             KV = N - NW + 1
  515:             KT = NW + 1
  516:             NHO = ( N-NW-1 ) - KT + 1
  517:             KWV = NW + 2
  518:             NVE = ( N-NW ) - KWV + 1
  519: *
  520: *           ==== Aggressive early deflation ====
  521: *
  522:             CALL DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  523:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
  524:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
  525:      $                   WORK, LWORK )
  526: *
  527: *           ==== Adjust KBOT accounting for new deflations. ====
  528: *
  529:             KBOT = KBOT - LD
  530: *
  531: *           ==== KS points to the shifts. ====
  532: *
  533:             KS = KBOT - LS + 1
  534: *
  535: *           ==== Skip an expensive QR sweep if there is a (partly
  536: *           .    heuristic) reason to expect that many eigenvalues
  537: *           .    will deflate without it.  Here, the QR sweep is
  538: *           .    skipped if many eigenvalues have just been deflated
  539: *           .    or if the remaining active block is small.
  540: *
  541:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  542:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  543: *
  544: *              ==== NS = nominal number of simultaneous shifts.
  545: *              .    This may be lowered (slightly) if DLAQR3
  546: *              .    did not provide that many shifts. ====
  547: *
  548:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  549:                NS = NS - MOD( NS, 2 )
  550: *
  551: *              ==== If there have been no deflations
  552: *              .    in a multiple of KEXSH iterations,
  553: *              .    then try exceptional shifts.
  554: *              .    Otherwise use shifts provided by
  555: *              .    DLAQR3 above or from the eigenvalues
  556: *              .    of a trailing principal submatrix. ====
  557: *
  558:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  559:                   KS = KBOT - NS + 1
  560:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
  561:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  562:                      AA = WILK1*SS + H( I, I )
  563:                      BB = SS
  564:                      CC = WILK2*SS
  565:                      DD = AA
  566:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
  567:      $                            WR( I ), WI( I ), CS, SN )
  568:    30             CONTINUE
  569:                   IF( KS.EQ.KTOP ) THEN
  570:                      WR( KS+1 ) = H( KS+1, KS+1 )
  571:                      WI( KS+1 ) = ZERO
  572:                      WR( KS ) = WR( KS+1 )
  573:                      WI( KS ) = WI( KS+1 )
  574:                   END IF
  575:                ELSE
  576: *
  577: *                 ==== Got NS/2 or fewer shifts? Use DLAQR4 or
  578: *                 .    DLAHQR on a trailing principal submatrix to
  579: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
  580: *                 .    there is enough space below the subdiagonal
  581: *                 .    to fit an NS-by-NS scratch array.) ====
  582: *
  583:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  584:                      KS = KBOT - NS + 1
  585:                      KT = N - NS + 1
  586:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  587:      $                            H( KT, 1 ), LDH )
  588:                      IF( NS.GT.NMIN ) THEN
  589:                         CALL DLAQR4( .false., .false., NS, 1, NS,
  590:      $                               H( KT, 1 ), LDH, WR( KS ),
  591:      $                               WI( KS ), 1, 1, ZDUM, 1, WORK,
  592:      $                               LWORK, INF )
  593:                      ELSE
  594:                         CALL DLAHQR( .false., .false., NS, 1, NS,
  595:      $                               H( KT, 1 ), LDH, WR( KS ),
  596:      $                               WI( KS ), 1, 1, ZDUM, 1, INF )
  597:                      END IF
  598:                      KS = KS + INF
  599: *
  600: *                    ==== In case of a rare QR failure use
  601: *                    .    eigenvalues of the trailing 2-by-2
  602: *                    .    principal submatrix.  ====
  603: *
  604:                      IF( KS.GE.KBOT ) THEN
  605:                         AA = H( KBOT-1, KBOT-1 )
  606:                         CC = H( KBOT, KBOT-1 )
  607:                         BB = H( KBOT-1, KBOT )
  608:                         DD = H( KBOT, KBOT )
  609:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
  610:      $                               WI( KBOT-1 ), WR( KBOT ),
  611:      $                               WI( KBOT ), CS, SN )
  612:                         KS = KBOT - 1
  613:                      END IF
  614:                   END IF
  615: *
  616:                   IF( KBOT-KS+1.GT.NS ) THEN
  617: *
  618: *                    ==== Sort the shifts (Helps a little)
  619: *                    .    Bubble sort keeps complex conjugate
  620: *                    .    pairs together. ====
  621: *
  622:                      SORTED = .false.
  623:                      DO 50 K = KBOT, KS + 1, -1
  624:                         IF( SORTED )
  625:      $                     GO TO 60
  626:                         SORTED = .true.
  627:                         DO 40 I = KS, K - 1
  628:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
  629:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
  630:                               SORTED = .false.
  631: *
  632:                               SWAP = WR( I )
  633:                               WR( I ) = WR( I+1 )
  634:                               WR( I+1 ) = SWAP
  635: *
  636:                               SWAP = WI( I )
  637:                               WI( I ) = WI( I+1 )
  638:                               WI( I+1 ) = SWAP
  639:                            END IF
  640:    40                   CONTINUE
  641:    50                CONTINUE
  642:    60                CONTINUE
  643:                   END IF
  644: *
  645: *                 ==== Shuffle shifts into pairs of real shifts
  646: *                 .    and pairs of complex conjugate shifts
  647: *                 .    assuming complex conjugate shifts are
  648: *                 .    already adjacent to one another. (Yes,
  649: *                 .    they are.)  ====
  650: *
  651:                   DO 70 I = KBOT, KS + 2, -2
  652:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
  653: *
  654:                         SWAP = WR( I )
  655:                         WR( I ) = WR( I-1 )
  656:                         WR( I-1 ) = WR( I-2 )
  657:                         WR( I-2 ) = SWAP
  658: *
  659:                         SWAP = WI( I )
  660:                         WI( I ) = WI( I-1 )
  661:                         WI( I-1 ) = WI( I-2 )
  662:                         WI( I-2 ) = SWAP
  663:                      END IF
  664:    70             CONTINUE
  665:                END IF
  666: *
  667: *              ==== If there are only two shifts and both are
  668: *              .    real, then use only one.  ====
  669: *
  670:                IF( KBOT-KS+1.EQ.2 ) THEN
  671:                   IF( WI( KBOT ).EQ.ZERO ) THEN
  672:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
  673:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  674:                         WR( KBOT-1 ) = WR( KBOT )
  675:                      ELSE
  676:                         WR( KBOT ) = WR( KBOT-1 )
  677:                      END IF
  678:                   END IF
  679:                END IF
  680: *
  681: *              ==== Use up to NS of the the smallest magnatiude
  682: *              .    shifts.  If there aren't NS shifts available,
  683: *              .    then use them all, possibly dropping one to
  684: *              .    make the number of shifts even. ====
  685: *
  686:                NS = MIN( NS, KBOT-KS+1 )
  687:                NS = NS - MOD( NS, 2 )
  688:                KS = KBOT - NS + 1
  689: *
  690: *              ==== Small-bulge multi-shift QR sweep:
  691: *              .    split workspace under the subdiagonal into
  692: *              .    - a KDU-by-KDU work array U in the lower
  693: *              .      left-hand-corner,
  694: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  695: *              .      (KDU-by-NHo) horizontal work array WH along
  696: *              .      the bottom edge,
  697: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  698: *              .      (NVE-by-KDU) vertical work WV arrow along
  699: *              .      the left-hand-edge. ====
  700: *
  701:                KDU = 3*NS - 3
  702:                KU = N - KDU + 1
  703:                KWH = KDU + 1
  704:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  705:                KWV = KDU + 4
  706:                NVE = N - KDU - KWV + 1
  707: *
  708: *              ==== Small-bulge multi-shift QR sweep ====
  709: *
  710:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  711:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
  712:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
  713:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
  714:             END IF
  715: *
  716: *           ==== Note progress (or the lack of it). ====
  717: *
  718:             IF( LD.GT.0 ) THEN
  719:                NDFL = 1
  720:             ELSE
  721:                NDFL = NDFL + 1
  722:             END IF
  723: *
  724: *           ==== End of main loop ====
  725:    80    CONTINUE
  726: *
  727: *        ==== Iteration limit exceeded.  Set INFO to show where
  728: *        .    the problem occurred and exit. ====
  729: *
  730:          INFO = KBOT
  731:    90    CONTINUE
  732:       END IF
  733: *
  734: *     ==== Return the optimal value of LWORK. ====
  735: *
  736:       WORK( 1 ) = DBLE( LWKOPT )
  737: *
  738: *     ==== End of DLAQR0 ====
  739: *
  740:       END

CVSweb interface <joel.bertrand@systella.fr>