Annotation of rpl/lapack/lapack/dlaqr0.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAQR0
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAQR0 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr0.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr0.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr0.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
        !            22: *                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
        !            26: *       LOGICAL            WANTT, WANTZ
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
        !            30: *      $                   Z( LDZ, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *>    DLAQR0 computes the eigenvalues of a Hessenberg matrix H
        !            40: *>    and, optionally, the matrices T and Z from the Schur decomposition
        !            41: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
        !            42: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
        !            43: *>
        !            44: *>    Optionally Z may be postmultiplied into an input orthogonal
        !            45: *>    matrix Q so that this routine can give the Schur factorization
        !            46: *>    of a matrix A which has been reduced to the Hessenberg form H
        !            47: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
        !            48: *> \endverbatim
        !            49: *
        !            50: *  Arguments:
        !            51: *  ==========
        !            52: *
        !            53: *> \param[in] WANTT
        !            54: *> \verbatim
        !            55: *>          WANTT is LOGICAL
        !            56: *>          = .TRUE. : the full Schur form T is required;
        !            57: *>          = .FALSE.: only eigenvalues are required.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] WANTZ
        !            61: *> \verbatim
        !            62: *>          WANTZ is LOGICAL
        !            63: *>          = .TRUE. : the matrix of Schur vectors Z is required;
        !            64: *>          = .FALSE.: Schur vectors are not required.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] N
        !            68: *> \verbatim
        !            69: *>          N is INTEGER
        !            70: *>           The order of the matrix H.  N .GE. 0.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] ILO
        !            74: *> \verbatim
        !            75: *>          ILO is INTEGER
        !            76: *> \endverbatim
        !            77: *>
        !            78: *> \param[in] IHI
        !            79: *> \verbatim
        !            80: *>          IHI is INTEGER
        !            81: *>           It is assumed that H is already upper triangular in rows
        !            82: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
        !            83: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
        !            84: *>           previous call to DGEBAL, and then passed to DGEHRD when the
        !            85: *>           matrix output by DGEBAL is reduced to Hessenberg form.
        !            86: *>           Otherwise, ILO and IHI should be set to 1 and N,
        !            87: *>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
        !            88: *>           If N = 0, then ILO = 1 and IHI = 0.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in,out] H
        !            92: *> \verbatim
        !            93: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
        !            94: *>           On entry, the upper Hessenberg matrix H.
        !            95: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
        !            96: *>           the upper quasi-triangular matrix T from the Schur
        !            97: *>           decomposition (the Schur form); 2-by-2 diagonal blocks
        !            98: *>           (corresponding to complex conjugate pairs of eigenvalues)
        !            99: *>           are returned in standard form, with H(i,i) = H(i+1,i+1)
        !           100: *>           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
        !           101: *>           .FALSE., then the contents of H are unspecified on exit.
        !           102: *>           (The output value of H when INFO.GT.0 is given under the
        !           103: *>           description of INFO below.)
        !           104: *>
        !           105: *>           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
        !           106: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] LDH
        !           110: *> \verbatim
        !           111: *>          LDH is INTEGER
        !           112: *>           The leading dimension of the array H. LDH .GE. max(1,N).
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[out] WR
        !           116: *> \verbatim
        !           117: *>          WR is DOUBLE PRECISION array, dimension (IHI)
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[out] WI
        !           121: *> \verbatim
        !           122: *>          WI is DOUBLE PRECISION array, dimension (IHI)
        !           123: *>           The real and imaginary parts, respectively, of the computed
        !           124: *>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
        !           125: *>           and WI(ILO:IHI). If two eigenvalues are computed as a
        !           126: *>           complex conjugate pair, they are stored in consecutive
        !           127: *>           elements of WR and WI, say the i-th and (i+1)th, with
        !           128: *>           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
        !           129: *>           the eigenvalues are stored in the same order as on the
        !           130: *>           diagonal of the Schur form returned in H, with
        !           131: *>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
        !           132: *>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
        !           133: *>           WI(i+1) = -WI(i).
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] ILOZ
        !           137: *> \verbatim
        !           138: *>          ILOZ is INTEGER
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] IHIZ
        !           142: *> \verbatim
        !           143: *>          IHIZ is INTEGER
        !           144: *>           Specify the rows of Z to which transformations must be
        !           145: *>           applied if WANTZ is .TRUE..
        !           146: *>           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[in,out] Z
        !           150: *> \verbatim
        !           151: *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
        !           152: *>           If WANTZ is .FALSE., then Z is not referenced.
        !           153: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
        !           154: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
        !           155: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
        !           156: *>           (The output value of Z when INFO.GT.0 is given under
        !           157: *>           the description of INFO below.)
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in] LDZ
        !           161: *> \verbatim
        !           162: *>          LDZ is INTEGER
        !           163: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
        !           164: *>           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[out] WORK
        !           168: *> \verbatim
        !           169: *>          WORK is DOUBLE PRECISION array, dimension LWORK
        !           170: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
        !           171: *>           the optimal value for LWORK.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[in] LWORK
        !           175: *> \verbatim
        !           176: *>          LWORK is INTEGER
        !           177: *>           The dimension of the array WORK.  LWORK .GE. max(1,N)
        !           178: *>           is sufficient, but LWORK typically as large as 6*N may
        !           179: *>           be required for optimal performance.  A workspace query
        !           180: *>           to determine the optimal workspace size is recommended.
        !           181: *>
        !           182: *>           If LWORK = -1, then DLAQR0 does a workspace query.
        !           183: *>           In this case, DLAQR0 checks the input parameters and
        !           184: *>           estimates the optimal workspace size for the given
        !           185: *>           values of N, ILO and IHI.  The estimate is returned
        !           186: *>           in WORK(1).  No error message related to LWORK is
        !           187: *>           issued by XERBLA.  Neither H nor Z are accessed.
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[out] INFO
        !           191: *> \verbatim
        !           192: *>          INFO is INTEGER
        !           193: *>             =  0:  successful exit
        !           194: *>           .GT. 0:  if INFO = i, DLAQR0 failed to compute all of
        !           195: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
        !           196: *>                and WI contain those eigenvalues which have been
        !           197: *>                successfully computed.  (Failures are rare.)
        !           198: *>
        !           199: *>                If INFO .GT. 0 and WANT is .FALSE., then on exit,
        !           200: *>                the remaining unconverged eigenvalues are the eigen-
        !           201: *>                values of the upper Hessenberg matrix rows and
        !           202: *>                columns ILO through INFO of the final, output
        !           203: *>                value of H.
        !           204: *>
        !           205: *>                If INFO .GT. 0 and WANTT is .TRUE., then on exit
        !           206: *>
        !           207: *>           (*)  (initial value of H)*U  = U*(final value of H)
        !           208: *>
        !           209: *>                where U is an orthogonal matrix.  The final
        !           210: *>                value of H is upper Hessenberg and quasi-triangular
        !           211: *>                in rows and columns INFO+1 through IHI.
        !           212: *>
        !           213: *>                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
        !           214: *>
        !           215: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
        !           216: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
        !           217: *>
        !           218: *>                where U is the orthogonal matrix in (*) (regard-
        !           219: *>                less of the value of WANTT.)
        !           220: *>
        !           221: *>                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
        !           222: *>                accessed.
        !           223: *> \endverbatim
        !           224: *
        !           225: *> \par Contributors:
        !           226: *  ==================
        !           227: *>
        !           228: *>       Karen Braman and Ralph Byers, Department of Mathematics,
        !           229: *>       University of Kansas, USA
        !           230: *
        !           231: *> \par References:
        !           232: *  ================
        !           233: *>
        !           234: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           235: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
        !           236: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
        !           237: *>       929--947, 2002.
        !           238: *> \n
        !           239: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           240: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
        !           241: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
        !           242: *
        !           243: *  Authors:
        !           244: *  ========
        !           245: *
        !           246: *> \author Univ. of Tennessee 
        !           247: *> \author Univ. of California Berkeley 
        !           248: *> \author Univ. of Colorado Denver 
        !           249: *> \author NAG Ltd. 
        !           250: *
        !           251: *> \date November 2011
        !           252: *
        !           253: *> \ingroup doubleOTHERauxiliary
        !           254: *
        !           255: *  =====================================================================
1.1       bertrand  256:       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                    257:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
                    258: *
1.8     ! bertrand  259: *  -- LAPACK auxiliary routine (version 3.4.0) --
        !           260: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           261: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           262: *     November 2011
1.1       bertrand  263: *
                    264: *     .. Scalar Arguments ..
                    265:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
                    266:       LOGICAL            WANTT, WANTZ
                    267: *     ..
                    268: *     .. Array Arguments ..
                    269:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
                    270:      $                   Z( LDZ, * )
                    271: *     ..
                    272: *
1.8     ! bertrand  273: *  ================================================================
1.1       bertrand  274: *
                    275: *     .. Parameters ..
                    276: *
                    277: *     ==== Matrices of order NTINY or smaller must be processed by
                    278: *     .    DLAHQR because of insufficient subdiagonal scratch space.
                    279: *     .    (This is a hard limit.) ====
                    280:       INTEGER            NTINY
                    281:       PARAMETER          ( NTINY = 11 )
                    282: *
                    283: *     ==== Exceptional deflation windows:  try to cure rare
                    284: *     .    slow convergence by varying the size of the
                    285: *     .    deflation window after KEXNW iterations. ====
                    286:       INTEGER            KEXNW
                    287:       PARAMETER          ( KEXNW = 5 )
                    288: *
                    289: *     ==== Exceptional shifts: try to cure rare slow convergence
                    290: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
                    291: *     .    ====
                    292:       INTEGER            KEXSH
                    293:       PARAMETER          ( KEXSH = 6 )
                    294: *
                    295: *     ==== The constants WILK1 and WILK2 are used to form the
                    296: *     .    exceptional shifts. ====
                    297:       DOUBLE PRECISION   WILK1, WILK2
                    298:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
                    299:       DOUBLE PRECISION   ZERO, ONE
                    300:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    301: *     ..
                    302: *     .. Local Scalars ..
                    303:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
                    304:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
                    305:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
                    306:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
                    307:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
                    308:       LOGICAL            SORTED
                    309:       CHARACTER          JBCMPZ*2
                    310: *     ..
                    311: *     .. External Functions ..
                    312:       INTEGER            ILAENV
                    313:       EXTERNAL           ILAENV
                    314: *     ..
                    315: *     .. Local Arrays ..
                    316:       DOUBLE PRECISION   ZDUM( 1, 1 )
                    317: *     ..
                    318: *     .. External Subroutines ..
                    319:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
                    320: *     ..
                    321: *     .. Intrinsic Functions ..
                    322:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
                    323: *     ..
                    324: *     .. Executable Statements ..
                    325:       INFO = 0
                    326: *
                    327: *     ==== Quick return for N = 0: nothing to do. ====
                    328: *
                    329:       IF( N.EQ.0 ) THEN
                    330:          WORK( 1 ) = ONE
                    331:          RETURN
                    332:       END IF
                    333: *
                    334:       IF( N.LE.NTINY ) THEN
                    335: *
                    336: *        ==== Tiny matrices must use DLAHQR. ====
                    337: *
                    338:          LWKOPT = 1
                    339:          IF( LWORK.NE.-1 )
                    340:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
                    341:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
                    342:       ELSE
                    343: *
                    344: *        ==== Use small bulge multi-shift QR with aggressive early
                    345: *        .    deflation on larger-than-tiny matrices. ====
                    346: *
                    347: *        ==== Hope for the best. ====
                    348: *
                    349:          INFO = 0
                    350: *
                    351: *        ==== Set up job flags for ILAENV. ====
                    352: *
                    353:          IF( WANTT ) THEN
                    354:             JBCMPZ( 1: 1 ) = 'S'
                    355:          ELSE
                    356:             JBCMPZ( 1: 1 ) = 'E'
                    357:          END IF
                    358:          IF( WANTZ ) THEN
                    359:             JBCMPZ( 2: 2 ) = 'V'
                    360:          ELSE
                    361:             JBCMPZ( 2: 2 ) = 'N'
                    362:          END IF
                    363: *
                    364: *        ==== NWR = recommended deflation window size.  At this
                    365: *        .    point,  N .GT. NTINY = 11, so there is enough
                    366: *        .    subdiagonal workspace for NWR.GE.2 as required.
                    367: *        .    (In fact, there is enough subdiagonal space for
                    368: *        .    NWR.GE.3.) ====
                    369: *
                    370:          NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    371:          NWR = MAX( 2, NWR )
                    372:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
                    373: *
                    374: *        ==== NSR = recommended number of simultaneous shifts.
                    375: *        .    At this point N .GT. NTINY = 11, so there is at
                    376: *        .    enough subdiagonal workspace for NSR to be even
                    377: *        .    and greater than or equal to two as required. ====
                    378: *
                    379:          NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    380:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
                    381:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
                    382: *
                    383: *        ==== Estimate optimal workspace ====
                    384: *
                    385: *        ==== Workspace query call to DLAQR3 ====
                    386: *
                    387:          CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
                    388:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
                    389:      $                N, H, LDH, WORK, -1 )
                    390: *
                    391: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
                    392: *
                    393:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
                    394: *
                    395: *        ==== Quick return in case of workspace query. ====
                    396: *
                    397:          IF( LWORK.EQ.-1 ) THEN
                    398:             WORK( 1 ) = DBLE( LWKOPT )
                    399:             RETURN
                    400:          END IF
                    401: *
                    402: *        ==== DLAHQR/DLAQR0 crossover point ====
                    403: *
                    404:          NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    405:          NMIN = MAX( NTINY, NMIN )
                    406: *
                    407: *        ==== Nibble crossover point ====
                    408: *
                    409:          NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    410:          NIBBLE = MAX( 0, NIBBLE )
                    411: *
                    412: *        ==== Accumulate reflections during ttswp?  Use block
                    413: *        .    2-by-2 structure during matrix-matrix multiply? ====
                    414: *
                    415:          KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    416:          KACC22 = MAX( 0, KACC22 )
                    417:          KACC22 = MIN( 2, KACC22 )
                    418: *
                    419: *        ==== NWMAX = the largest possible deflation window for
                    420: *        .    which there is sufficient workspace. ====
                    421: *
                    422:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
                    423:          NW = NWMAX
                    424: *
                    425: *        ==== NSMAX = the Largest number of simultaneous shifts
                    426: *        .    for which there is sufficient workspace. ====
                    427: *
                    428:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
                    429:          NSMAX = NSMAX - MOD( NSMAX, 2 )
                    430: *
                    431: *        ==== NDFL: an iteration count restarted at deflation. ====
                    432: *
                    433:          NDFL = 1
                    434: *
                    435: *        ==== ITMAX = iteration limit ====
                    436: *
                    437:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
                    438: *
                    439: *        ==== Last row and column in the active block ====
                    440: *
                    441:          KBOT = IHI
                    442: *
                    443: *        ==== Main Loop ====
                    444: *
                    445:          DO 80 IT = 1, ITMAX
                    446: *
                    447: *           ==== Done when KBOT falls below ILO ====
                    448: *
                    449:             IF( KBOT.LT.ILO )
                    450:      $         GO TO 90
                    451: *
                    452: *           ==== Locate active block ====
                    453: *
                    454:             DO 10 K = KBOT, ILO + 1, -1
                    455:                IF( H( K, K-1 ).EQ.ZERO )
                    456:      $            GO TO 20
                    457:    10       CONTINUE
                    458:             K = ILO
                    459:    20       CONTINUE
                    460:             KTOP = K
                    461: *
                    462: *           ==== Select deflation window size:
                    463: *           .    Typical Case:
                    464: *           .      If possible and advisable, nibble the entire
                    465: *           .      active block.  If not, use size MIN(NWR,NWMAX)
                    466: *           .      or MIN(NWR+1,NWMAX) depending upon which has
                    467: *           .      the smaller corresponding subdiagonal entry
                    468: *           .      (a heuristic).
                    469: *           .
                    470: *           .    Exceptional Case:
                    471: *           .      If there have been no deflations in KEXNW or
                    472: *           .      more iterations, then vary the deflation window
                    473: *           .      size.   At first, because, larger windows are,
                    474: *           .      in general, more powerful than smaller ones,
                    475: *           .      rapidly increase the window to the maximum possible.
                    476: *           .      Then, gradually reduce the window size. ====
                    477: *
                    478:             NH = KBOT - KTOP + 1
                    479:             NWUPBD = MIN( NH, NWMAX )
                    480:             IF( NDFL.LT.KEXNW ) THEN
                    481:                NW = MIN( NWUPBD, NWR )
                    482:             ELSE
                    483:                NW = MIN( NWUPBD, 2*NW )
                    484:             END IF
                    485:             IF( NW.LT.NWMAX ) THEN
                    486:                IF( NW.GE.NH-1 ) THEN
                    487:                   NW = NH
                    488:                ELSE
                    489:                   KWTOP = KBOT - NW + 1
                    490:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
                    491:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
                    492:                END IF
                    493:             END IF
                    494:             IF( NDFL.LT.KEXNW ) THEN
                    495:                NDEC = -1
                    496:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
                    497:                NDEC = NDEC + 1
                    498:                IF( NW-NDEC.LT.2 )
                    499:      $            NDEC = 0
                    500:                NW = NW - NDEC
                    501:             END IF
                    502: *
                    503: *           ==== Aggressive early deflation:
                    504: *           .    split workspace under the subdiagonal into
                    505: *           .      - an nw-by-nw work array V in the lower
                    506: *           .        left-hand-corner,
                    507: *           .      - an NW-by-at-least-NW-but-more-is-better
                    508: *           .        (NW-by-NHO) horizontal work array along
                    509: *           .        the bottom edge,
                    510: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
                    511: *           .        vertical work array along the left-hand-edge.
                    512: *           .        ====
                    513: *
                    514:             KV = N - NW + 1
                    515:             KT = NW + 1
                    516:             NHO = ( N-NW-1 ) - KT + 1
                    517:             KWV = NW + 2
                    518:             NVE = ( N-NW ) - KWV + 1
                    519: *
                    520: *           ==== Aggressive early deflation ====
                    521: *
                    522:             CALL DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    523:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
                    524:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
                    525:      $                   WORK, LWORK )
                    526: *
                    527: *           ==== Adjust KBOT accounting for new deflations. ====
                    528: *
                    529:             KBOT = KBOT - LD
                    530: *
                    531: *           ==== KS points to the shifts. ====
                    532: *
                    533:             KS = KBOT - LS + 1
                    534: *
                    535: *           ==== Skip an expensive QR sweep if there is a (partly
                    536: *           .    heuristic) reason to expect that many eigenvalues
                    537: *           .    will deflate without it.  Here, the QR sweep is
                    538: *           .    skipped if many eigenvalues have just been deflated
                    539: *           .    or if the remaining active block is small.
                    540: *
                    541:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
                    542:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
                    543: *
                    544: *              ==== NS = nominal number of simultaneous shifts.
                    545: *              .    This may be lowered (slightly) if DLAQR3
                    546: *              .    did not provide that many shifts. ====
                    547: *
                    548:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
                    549:                NS = NS - MOD( NS, 2 )
                    550: *
                    551: *              ==== If there have been no deflations
                    552: *              .    in a multiple of KEXSH iterations,
                    553: *              .    then try exceptional shifts.
                    554: *              .    Otherwise use shifts provided by
                    555: *              .    DLAQR3 above or from the eigenvalues
                    556: *              .    of a trailing principal submatrix. ====
                    557: *
                    558:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                    559:                   KS = KBOT - NS + 1
                    560:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
                    561:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
                    562:                      AA = WILK1*SS + H( I, I )
                    563:                      BB = SS
                    564:                      CC = WILK2*SS
                    565:                      DD = AA
                    566:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
                    567:      $                            WR( I ), WI( I ), CS, SN )
                    568:    30             CONTINUE
                    569:                   IF( KS.EQ.KTOP ) THEN
                    570:                      WR( KS+1 ) = H( KS+1, KS+1 )
                    571:                      WI( KS+1 ) = ZERO
                    572:                      WR( KS ) = WR( KS+1 )
                    573:                      WI( KS ) = WI( KS+1 )
                    574:                   END IF
                    575:                ELSE
                    576: *
                    577: *                 ==== Got NS/2 or fewer shifts? Use DLAQR4 or
                    578: *                 .    DLAHQR on a trailing principal submatrix to
                    579: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
                    580: *                 .    there is enough space below the subdiagonal
                    581: *                 .    to fit an NS-by-NS scratch array.) ====
                    582: *
                    583:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
                    584:                      KS = KBOT - NS + 1
                    585:                      KT = N - NS + 1
                    586:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
                    587:      $                            H( KT, 1 ), LDH )
                    588:                      IF( NS.GT.NMIN ) THEN
                    589:                         CALL DLAQR4( .false., .false., NS, 1, NS,
                    590:      $                               H( KT, 1 ), LDH, WR( KS ),
                    591:      $                               WI( KS ), 1, 1, ZDUM, 1, WORK,
                    592:      $                               LWORK, INF )
                    593:                      ELSE
                    594:                         CALL DLAHQR( .false., .false., NS, 1, NS,
                    595:      $                               H( KT, 1 ), LDH, WR( KS ),
                    596:      $                               WI( KS ), 1, 1, ZDUM, 1, INF )
                    597:                      END IF
                    598:                      KS = KS + INF
                    599: *
                    600: *                    ==== In case of a rare QR failure use
                    601: *                    .    eigenvalues of the trailing 2-by-2
                    602: *                    .    principal submatrix.  ====
                    603: *
                    604:                      IF( KS.GE.KBOT ) THEN
                    605:                         AA = H( KBOT-1, KBOT-1 )
                    606:                         CC = H( KBOT, KBOT-1 )
                    607:                         BB = H( KBOT-1, KBOT )
                    608:                         DD = H( KBOT, KBOT )
                    609:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
                    610:      $                               WI( KBOT-1 ), WR( KBOT ),
                    611:      $                               WI( KBOT ), CS, SN )
                    612:                         KS = KBOT - 1
                    613:                      END IF
                    614:                   END IF
                    615: *
                    616:                   IF( KBOT-KS+1.GT.NS ) THEN
                    617: *
                    618: *                    ==== Sort the shifts (Helps a little)
                    619: *                    .    Bubble sort keeps complex conjugate
                    620: *                    .    pairs together. ====
                    621: *
                    622:                      SORTED = .false.
                    623:                      DO 50 K = KBOT, KS + 1, -1
                    624:                         IF( SORTED )
                    625:      $                     GO TO 60
                    626:                         SORTED = .true.
                    627:                         DO 40 I = KS, K - 1
                    628:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
                    629:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
                    630:                               SORTED = .false.
                    631: *
                    632:                               SWAP = WR( I )
                    633:                               WR( I ) = WR( I+1 )
                    634:                               WR( I+1 ) = SWAP
                    635: *
                    636:                               SWAP = WI( I )
                    637:                               WI( I ) = WI( I+1 )
                    638:                               WI( I+1 ) = SWAP
                    639:                            END IF
                    640:    40                   CONTINUE
                    641:    50                CONTINUE
                    642:    60                CONTINUE
                    643:                   END IF
                    644: *
                    645: *                 ==== Shuffle shifts into pairs of real shifts
                    646: *                 .    and pairs of complex conjugate shifts
                    647: *                 .    assuming complex conjugate shifts are
                    648: *                 .    already adjacent to one another. (Yes,
                    649: *                 .    they are.)  ====
                    650: *
                    651:                   DO 70 I = KBOT, KS + 2, -2
                    652:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
                    653: *
                    654:                         SWAP = WR( I )
                    655:                         WR( I ) = WR( I-1 )
                    656:                         WR( I-1 ) = WR( I-2 )
                    657:                         WR( I-2 ) = SWAP
                    658: *
                    659:                         SWAP = WI( I )
                    660:                         WI( I ) = WI( I-1 )
                    661:                         WI( I-1 ) = WI( I-2 )
                    662:                         WI( I-2 ) = SWAP
                    663:                      END IF
                    664:    70             CONTINUE
                    665:                END IF
                    666: *
                    667: *              ==== If there are only two shifts and both are
                    668: *              .    real, then use only one.  ====
                    669: *
                    670:                IF( KBOT-KS+1.EQ.2 ) THEN
                    671:                   IF( WI( KBOT ).EQ.ZERO ) THEN
                    672:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
                    673:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
                    674:                         WR( KBOT-1 ) = WR( KBOT )
                    675:                      ELSE
                    676:                         WR( KBOT ) = WR( KBOT-1 )
                    677:                      END IF
                    678:                   END IF
                    679:                END IF
                    680: *
                    681: *              ==== Use up to NS of the the smallest magnatiude
                    682: *              .    shifts.  If there aren't NS shifts available,
                    683: *              .    then use them all, possibly dropping one to
                    684: *              .    make the number of shifts even. ====
                    685: *
                    686:                NS = MIN( NS, KBOT-KS+1 )
                    687:                NS = NS - MOD( NS, 2 )
                    688:                KS = KBOT - NS + 1
                    689: *
                    690: *              ==== Small-bulge multi-shift QR sweep:
                    691: *              .    split workspace under the subdiagonal into
                    692: *              .    - a KDU-by-KDU work array U in the lower
                    693: *              .      left-hand-corner,
                    694: *              .    - a KDU-by-at-least-KDU-but-more-is-better
                    695: *              .      (KDU-by-NHo) horizontal work array WH along
                    696: *              .      the bottom edge,
                    697: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
                    698: *              .      (NVE-by-KDU) vertical work WV arrow along
                    699: *              .      the left-hand-edge. ====
                    700: *
                    701:                KDU = 3*NS - 3
                    702:                KU = N - KDU + 1
                    703:                KWH = KDU + 1
                    704:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
                    705:                KWV = KDU + 4
                    706:                NVE = N - KDU - KWV + 1
                    707: *
                    708: *              ==== Small-bulge multi-shift QR sweep ====
                    709: *
                    710:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
                    711:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
                    712:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
                    713:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
                    714:             END IF
                    715: *
                    716: *           ==== Note progress (or the lack of it). ====
                    717: *
                    718:             IF( LD.GT.0 ) THEN
                    719:                NDFL = 1
                    720:             ELSE
                    721:                NDFL = NDFL + 1
                    722:             END IF
                    723: *
                    724: *           ==== End of main loop ====
                    725:    80    CONTINUE
                    726: *
                    727: *        ==== Iteration limit exceeded.  Set INFO to show where
                    728: *        .    the problem occurred and exit. ====
                    729: *
                    730:          INFO = KBOT
                    731:    90    CONTINUE
                    732:       END IF
                    733: *
                    734: *     ==== Return the optimal value of LWORK. ====
                    735: *
                    736:       WORK( 1 ) = DBLE( LWKOPT )
                    737: *
                    738: *     ==== End of DLAQR0 ====
                    739: *
                    740:       END

CVSweb interface <joel.bertrand@systella.fr>