Annotation of rpl/lapack/lapack/dlaqr0.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
        !             2:      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
        !            10:       LOGICAL            WANTT, WANTZ
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
        !            14:      $                   Z( LDZ, * )
        !            15: *     ..
        !            16: *
        !            17: *     Purpose
        !            18: *     =======
        !            19: *
        !            20: *     DLAQR0 computes the eigenvalues of a Hessenberg matrix H
        !            21: *     and, optionally, the matrices T and Z from the Schur decomposition
        !            22: *     H = Z T Z**T, where T is an upper quasi-triangular matrix (the
        !            23: *     Schur form), and Z is the orthogonal matrix of Schur vectors.
        !            24: *
        !            25: *     Optionally Z may be postmultiplied into an input orthogonal
        !            26: *     matrix Q so that this routine can give the Schur factorization
        !            27: *     of a matrix A which has been reduced to the Hessenberg form H
        !            28: *     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
        !            29: *
        !            30: *     Arguments
        !            31: *     =========
        !            32: *
        !            33: *     WANTT   (input) LOGICAL
        !            34: *          = .TRUE. : the full Schur form T is required;
        !            35: *          = .FALSE.: only eigenvalues are required.
        !            36: *
        !            37: *     WANTZ   (input) LOGICAL
        !            38: *          = .TRUE. : the matrix of Schur vectors Z is required;
        !            39: *          = .FALSE.: Schur vectors are not required.
        !            40: *
        !            41: *     N     (input) INTEGER
        !            42: *           The order of the matrix H.  N .GE. 0.
        !            43: *
        !            44: *     ILO   (input) INTEGER
        !            45: *     IHI   (input) INTEGER
        !            46: *           It is assumed that H is already upper triangular in rows
        !            47: *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
        !            48: *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
        !            49: *           previous call to DGEBAL, and then passed to DGEHRD when the
        !            50: *           matrix output by DGEBAL is reduced to Hessenberg form.
        !            51: *           Otherwise, ILO and IHI should be set to 1 and N,
        !            52: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
        !            53: *           If N = 0, then ILO = 1 and IHI = 0.
        !            54: *
        !            55: *     H     (input/output) DOUBLE PRECISION array, dimension (LDH,N)
        !            56: *           On entry, the upper Hessenberg matrix H.
        !            57: *           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
        !            58: *           the upper quasi-triangular matrix T from the Schur
        !            59: *           decomposition (the Schur form); 2-by-2 diagonal blocks
        !            60: *           (corresponding to complex conjugate pairs of eigenvalues)
        !            61: *           are returned in standard form, with H(i,i) = H(i+1,i+1)
        !            62: *           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
        !            63: *           .FALSE., then the contents of H are unspecified on exit.
        !            64: *           (The output value of H when INFO.GT.0 is given under the
        !            65: *           description of INFO below.)
        !            66: *
        !            67: *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
        !            68: *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
        !            69: *
        !            70: *     LDH   (input) INTEGER
        !            71: *           The leading dimension of the array H. LDH .GE. max(1,N).
        !            72: *
        !            73: *     WR    (output) DOUBLE PRECISION array, dimension (IHI)
        !            74: *     WI    (output) DOUBLE PRECISION array, dimension (IHI)
        !            75: *           The real and imaginary parts, respectively, of the computed
        !            76: *           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
        !            77: *           and WI(ILO:IHI). If two eigenvalues are computed as a
        !            78: *           complex conjugate pair, they are stored in consecutive
        !            79: *           elements of WR and WI, say the i-th and (i+1)th, with
        !            80: *           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
        !            81: *           the eigenvalues are stored in the same order as on the
        !            82: *           diagonal of the Schur form returned in H, with
        !            83: *           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
        !            84: *           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
        !            85: *           WI(i+1) = -WI(i).
        !            86: *
        !            87: *     ILOZ     (input) INTEGER
        !            88: *     IHIZ     (input) INTEGER
        !            89: *           Specify the rows of Z to which transformations must be
        !            90: *           applied if WANTZ is .TRUE..
        !            91: *           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
        !            92: *
        !            93: *     Z     (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
        !            94: *           If WANTZ is .FALSE., then Z is not referenced.
        !            95: *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
        !            96: *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
        !            97: *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
        !            98: *           (The output value of Z when INFO.GT.0 is given under
        !            99: *           the description of INFO below.)
        !           100: *
        !           101: *     LDZ   (input) INTEGER
        !           102: *           The leading dimension of the array Z.  if WANTZ is .TRUE.
        !           103: *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
        !           104: *
        !           105: *     WORK  (workspace/output) DOUBLE PRECISION array, dimension LWORK
        !           106: *           On exit, if LWORK = -1, WORK(1) returns an estimate of
        !           107: *           the optimal value for LWORK.
        !           108: *
        !           109: *     LWORK (input) INTEGER
        !           110: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
        !           111: *           is sufficient, but LWORK typically as large as 6*N may
        !           112: *           be required for optimal performance.  A workspace query
        !           113: *           to determine the optimal workspace size is recommended.
        !           114: *
        !           115: *           If LWORK = -1, then DLAQR0 does a workspace query.
        !           116: *           In this case, DLAQR0 checks the input parameters and
        !           117: *           estimates the optimal workspace size for the given
        !           118: *           values of N, ILO and IHI.  The estimate is returned
        !           119: *           in WORK(1).  No error message related to LWORK is
        !           120: *           issued by XERBLA.  Neither H nor Z are accessed.
        !           121: *
        !           122: *
        !           123: *     INFO  (output) INTEGER
        !           124: *             =  0:  successful exit
        !           125: *           .GT. 0:  if INFO = i, DLAQR0 failed to compute all of
        !           126: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
        !           127: *                and WI contain those eigenvalues which have been
        !           128: *                successfully computed.  (Failures are rare.)
        !           129: *
        !           130: *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
        !           131: *                the remaining unconverged eigenvalues are the eigen-
        !           132: *                values of the upper Hessenberg matrix rows and
        !           133: *                columns ILO through INFO of the final, output
        !           134: *                value of H.
        !           135: *
        !           136: *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
        !           137: *
        !           138: *           (*)  (initial value of H)*U  = U*(final value of H)
        !           139: *
        !           140: *                where U is an orthogonal matrix.  The final
        !           141: *                value of H is upper Hessenberg and quasi-triangular
        !           142: *                in rows and columns INFO+1 through IHI.
        !           143: *
        !           144: *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
        !           145: *
        !           146: *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
        !           147: *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
        !           148: *
        !           149: *                where U is the orthogonal matrix in (*) (regard-
        !           150: *                less of the value of WANTT.)
        !           151: *
        !           152: *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
        !           153: *                accessed.
        !           154: *
        !           155: *     ================================================================
        !           156: *     Based on contributions by
        !           157: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           158: *        University of Kansas, USA
        !           159: *
        !           160: *     ================================================================
        !           161: *     References:
        !           162: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           163: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
        !           164: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
        !           165: *       929--947, 2002.
        !           166: *
        !           167: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           168: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
        !           169: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
        !           170: *
        !           171: *     ================================================================
        !           172: *     .. Parameters ..
        !           173: *
        !           174: *     ==== Matrices of order NTINY or smaller must be processed by
        !           175: *     .    DLAHQR because of insufficient subdiagonal scratch space.
        !           176: *     .    (This is a hard limit.) ====
        !           177:       INTEGER            NTINY
        !           178:       PARAMETER          ( NTINY = 11 )
        !           179: *
        !           180: *     ==== Exceptional deflation windows:  try to cure rare
        !           181: *     .    slow convergence by varying the size of the
        !           182: *     .    deflation window after KEXNW iterations. ====
        !           183:       INTEGER            KEXNW
        !           184:       PARAMETER          ( KEXNW = 5 )
        !           185: *
        !           186: *     ==== Exceptional shifts: try to cure rare slow convergence
        !           187: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
        !           188: *     .    ====
        !           189:       INTEGER            KEXSH
        !           190:       PARAMETER          ( KEXSH = 6 )
        !           191: *
        !           192: *     ==== The constants WILK1 and WILK2 are used to form the
        !           193: *     .    exceptional shifts. ====
        !           194:       DOUBLE PRECISION   WILK1, WILK2
        !           195:       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
        !           196:       DOUBLE PRECISION   ZERO, ONE
        !           197:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
        !           198: *     ..
        !           199: *     .. Local Scalars ..
        !           200:       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
        !           201:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
        !           202:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
        !           203:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
        !           204:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
        !           205:       LOGICAL            SORTED
        !           206:       CHARACTER          JBCMPZ*2
        !           207: *     ..
        !           208: *     .. External Functions ..
        !           209:       INTEGER            ILAENV
        !           210:       EXTERNAL           ILAENV
        !           211: *     ..
        !           212: *     .. Local Arrays ..
        !           213:       DOUBLE PRECISION   ZDUM( 1, 1 )
        !           214: *     ..
        !           215: *     .. External Subroutines ..
        !           216:       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
        !           217: *     ..
        !           218: *     .. Intrinsic Functions ..
        !           219:       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
        !           220: *     ..
        !           221: *     .. Executable Statements ..
        !           222:       INFO = 0
        !           223: *
        !           224: *     ==== Quick return for N = 0: nothing to do. ====
        !           225: *
        !           226:       IF( N.EQ.0 ) THEN
        !           227:          WORK( 1 ) = ONE
        !           228:          RETURN
        !           229:       END IF
        !           230: *
        !           231:       IF( N.LE.NTINY ) THEN
        !           232: *
        !           233: *        ==== Tiny matrices must use DLAHQR. ====
        !           234: *
        !           235:          LWKOPT = 1
        !           236:          IF( LWORK.NE.-1 )
        !           237:      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
        !           238:      $                   ILOZ, IHIZ, Z, LDZ, INFO )
        !           239:       ELSE
        !           240: *
        !           241: *        ==== Use small bulge multi-shift QR with aggressive early
        !           242: *        .    deflation on larger-than-tiny matrices. ====
        !           243: *
        !           244: *        ==== Hope for the best. ====
        !           245: *
        !           246:          INFO = 0
        !           247: *
        !           248: *        ==== Set up job flags for ILAENV. ====
        !           249: *
        !           250:          IF( WANTT ) THEN
        !           251:             JBCMPZ( 1: 1 ) = 'S'
        !           252:          ELSE
        !           253:             JBCMPZ( 1: 1 ) = 'E'
        !           254:          END IF
        !           255:          IF( WANTZ ) THEN
        !           256:             JBCMPZ( 2: 2 ) = 'V'
        !           257:          ELSE
        !           258:             JBCMPZ( 2: 2 ) = 'N'
        !           259:          END IF
        !           260: *
        !           261: *        ==== NWR = recommended deflation window size.  At this
        !           262: *        .    point,  N .GT. NTINY = 11, so there is enough
        !           263: *        .    subdiagonal workspace for NWR.GE.2 as required.
        !           264: *        .    (In fact, there is enough subdiagonal space for
        !           265: *        .    NWR.GE.3.) ====
        !           266: *
        !           267:          NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
        !           268:          NWR = MAX( 2, NWR )
        !           269:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
        !           270: *
        !           271: *        ==== NSR = recommended number of simultaneous shifts.
        !           272: *        .    At this point N .GT. NTINY = 11, so there is at
        !           273: *        .    enough subdiagonal workspace for NSR to be even
        !           274: *        .    and greater than or equal to two as required. ====
        !           275: *
        !           276:          NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
        !           277:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
        !           278:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
        !           279: *
        !           280: *        ==== Estimate optimal workspace ====
        !           281: *
        !           282: *        ==== Workspace query call to DLAQR3 ====
        !           283: *
        !           284:          CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
        !           285:      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
        !           286:      $                N, H, LDH, WORK, -1 )
        !           287: *
        !           288: *        ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
        !           289: *
        !           290:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
        !           291: *
        !           292: *        ==== Quick return in case of workspace query. ====
        !           293: *
        !           294:          IF( LWORK.EQ.-1 ) THEN
        !           295:             WORK( 1 ) = DBLE( LWKOPT )
        !           296:             RETURN
        !           297:          END IF
        !           298: *
        !           299: *        ==== DLAHQR/DLAQR0 crossover point ====
        !           300: *
        !           301:          NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
        !           302:          NMIN = MAX( NTINY, NMIN )
        !           303: *
        !           304: *        ==== Nibble crossover point ====
        !           305: *
        !           306:          NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
        !           307:          NIBBLE = MAX( 0, NIBBLE )
        !           308: *
        !           309: *        ==== Accumulate reflections during ttswp?  Use block
        !           310: *        .    2-by-2 structure during matrix-matrix multiply? ====
        !           311: *
        !           312:          KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
        !           313:          KACC22 = MAX( 0, KACC22 )
        !           314:          KACC22 = MIN( 2, KACC22 )
        !           315: *
        !           316: *        ==== NWMAX = the largest possible deflation window for
        !           317: *        .    which there is sufficient workspace. ====
        !           318: *
        !           319:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
        !           320:          NW = NWMAX
        !           321: *
        !           322: *        ==== NSMAX = the Largest number of simultaneous shifts
        !           323: *        .    for which there is sufficient workspace. ====
        !           324: *
        !           325:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
        !           326:          NSMAX = NSMAX - MOD( NSMAX, 2 )
        !           327: *
        !           328: *        ==== NDFL: an iteration count restarted at deflation. ====
        !           329: *
        !           330:          NDFL = 1
        !           331: *
        !           332: *        ==== ITMAX = iteration limit ====
        !           333: *
        !           334:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
        !           335: *
        !           336: *        ==== Last row and column in the active block ====
        !           337: *
        !           338:          KBOT = IHI
        !           339: *
        !           340: *        ==== Main Loop ====
        !           341: *
        !           342:          DO 80 IT = 1, ITMAX
        !           343: *
        !           344: *           ==== Done when KBOT falls below ILO ====
        !           345: *
        !           346:             IF( KBOT.LT.ILO )
        !           347:      $         GO TO 90
        !           348: *
        !           349: *           ==== Locate active block ====
        !           350: *
        !           351:             DO 10 K = KBOT, ILO + 1, -1
        !           352:                IF( H( K, K-1 ).EQ.ZERO )
        !           353:      $            GO TO 20
        !           354:    10       CONTINUE
        !           355:             K = ILO
        !           356:    20       CONTINUE
        !           357:             KTOP = K
        !           358: *
        !           359: *           ==== Select deflation window size:
        !           360: *           .    Typical Case:
        !           361: *           .      If possible and advisable, nibble the entire
        !           362: *           .      active block.  If not, use size MIN(NWR,NWMAX)
        !           363: *           .      or MIN(NWR+1,NWMAX) depending upon which has
        !           364: *           .      the smaller corresponding subdiagonal entry
        !           365: *           .      (a heuristic).
        !           366: *           .
        !           367: *           .    Exceptional Case:
        !           368: *           .      If there have been no deflations in KEXNW or
        !           369: *           .      more iterations, then vary the deflation window
        !           370: *           .      size.   At first, because, larger windows are,
        !           371: *           .      in general, more powerful than smaller ones,
        !           372: *           .      rapidly increase the window to the maximum possible.
        !           373: *           .      Then, gradually reduce the window size. ====
        !           374: *
        !           375:             NH = KBOT - KTOP + 1
        !           376:             NWUPBD = MIN( NH, NWMAX )
        !           377:             IF( NDFL.LT.KEXNW ) THEN
        !           378:                NW = MIN( NWUPBD, NWR )
        !           379:             ELSE
        !           380:                NW = MIN( NWUPBD, 2*NW )
        !           381:             END IF
        !           382:             IF( NW.LT.NWMAX ) THEN
        !           383:                IF( NW.GE.NH-1 ) THEN
        !           384:                   NW = NH
        !           385:                ELSE
        !           386:                   KWTOP = KBOT - NW + 1
        !           387:                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
        !           388:      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
        !           389:                END IF
        !           390:             END IF
        !           391:             IF( NDFL.LT.KEXNW ) THEN
        !           392:                NDEC = -1
        !           393:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
        !           394:                NDEC = NDEC + 1
        !           395:                IF( NW-NDEC.LT.2 )
        !           396:      $            NDEC = 0
        !           397:                NW = NW - NDEC
        !           398:             END IF
        !           399: *
        !           400: *           ==== Aggressive early deflation:
        !           401: *           .    split workspace under the subdiagonal into
        !           402: *           .      - an nw-by-nw work array V in the lower
        !           403: *           .        left-hand-corner,
        !           404: *           .      - an NW-by-at-least-NW-but-more-is-better
        !           405: *           .        (NW-by-NHO) horizontal work array along
        !           406: *           .        the bottom edge,
        !           407: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
        !           408: *           .        vertical work array along the left-hand-edge.
        !           409: *           .        ====
        !           410: *
        !           411:             KV = N - NW + 1
        !           412:             KT = NW + 1
        !           413:             NHO = ( N-NW-1 ) - KT + 1
        !           414:             KWV = NW + 2
        !           415:             NVE = ( N-NW ) - KWV + 1
        !           416: *
        !           417: *           ==== Aggressive early deflation ====
        !           418: *
        !           419:             CALL DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !           420:      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
        !           421:      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
        !           422:      $                   WORK, LWORK )
        !           423: *
        !           424: *           ==== Adjust KBOT accounting for new deflations. ====
        !           425: *
        !           426:             KBOT = KBOT - LD
        !           427: *
        !           428: *           ==== KS points to the shifts. ====
        !           429: *
        !           430:             KS = KBOT - LS + 1
        !           431: *
        !           432: *           ==== Skip an expensive QR sweep if there is a (partly
        !           433: *           .    heuristic) reason to expect that many eigenvalues
        !           434: *           .    will deflate without it.  Here, the QR sweep is
        !           435: *           .    skipped if many eigenvalues have just been deflated
        !           436: *           .    or if the remaining active block is small.
        !           437: *
        !           438:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
        !           439:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
        !           440: *
        !           441: *              ==== NS = nominal number of simultaneous shifts.
        !           442: *              .    This may be lowered (slightly) if DLAQR3
        !           443: *              .    did not provide that many shifts. ====
        !           444: *
        !           445:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
        !           446:                NS = NS - MOD( NS, 2 )
        !           447: *
        !           448: *              ==== If there have been no deflations
        !           449: *              .    in a multiple of KEXSH iterations,
        !           450: *              .    then try exceptional shifts.
        !           451: *              .    Otherwise use shifts provided by
        !           452: *              .    DLAQR3 above or from the eigenvalues
        !           453: *              .    of a trailing principal submatrix. ====
        !           454: *
        !           455:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
        !           456:                   KS = KBOT - NS + 1
        !           457:                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
        !           458:                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
        !           459:                      AA = WILK1*SS + H( I, I )
        !           460:                      BB = SS
        !           461:                      CC = WILK2*SS
        !           462:                      DD = AA
        !           463:                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
        !           464:      $                            WR( I ), WI( I ), CS, SN )
        !           465:    30             CONTINUE
        !           466:                   IF( KS.EQ.KTOP ) THEN
        !           467:                      WR( KS+1 ) = H( KS+1, KS+1 )
        !           468:                      WI( KS+1 ) = ZERO
        !           469:                      WR( KS ) = WR( KS+1 )
        !           470:                      WI( KS ) = WI( KS+1 )
        !           471:                   END IF
        !           472:                ELSE
        !           473: *
        !           474: *                 ==== Got NS/2 or fewer shifts? Use DLAQR4 or
        !           475: *                 .    DLAHQR on a trailing principal submatrix to
        !           476: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
        !           477: *                 .    there is enough space below the subdiagonal
        !           478: *                 .    to fit an NS-by-NS scratch array.) ====
        !           479: *
        !           480:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
        !           481:                      KS = KBOT - NS + 1
        !           482:                      KT = N - NS + 1
        !           483:                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
        !           484:      $                            H( KT, 1 ), LDH )
        !           485:                      IF( NS.GT.NMIN ) THEN
        !           486:                         CALL DLAQR4( .false., .false., NS, 1, NS,
        !           487:      $                               H( KT, 1 ), LDH, WR( KS ),
        !           488:      $                               WI( KS ), 1, 1, ZDUM, 1, WORK,
        !           489:      $                               LWORK, INF )
        !           490:                      ELSE
        !           491:                         CALL DLAHQR( .false., .false., NS, 1, NS,
        !           492:      $                               H( KT, 1 ), LDH, WR( KS ),
        !           493:      $                               WI( KS ), 1, 1, ZDUM, 1, INF )
        !           494:                      END IF
        !           495:                      KS = KS + INF
        !           496: *
        !           497: *                    ==== In case of a rare QR failure use
        !           498: *                    .    eigenvalues of the trailing 2-by-2
        !           499: *                    .    principal submatrix.  ====
        !           500: *
        !           501:                      IF( KS.GE.KBOT ) THEN
        !           502:                         AA = H( KBOT-1, KBOT-1 )
        !           503:                         CC = H( KBOT, KBOT-1 )
        !           504:                         BB = H( KBOT-1, KBOT )
        !           505:                         DD = H( KBOT, KBOT )
        !           506:                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
        !           507:      $                               WI( KBOT-1 ), WR( KBOT ),
        !           508:      $                               WI( KBOT ), CS, SN )
        !           509:                         KS = KBOT - 1
        !           510:                      END IF
        !           511:                   END IF
        !           512: *
        !           513:                   IF( KBOT-KS+1.GT.NS ) THEN
        !           514: *
        !           515: *                    ==== Sort the shifts (Helps a little)
        !           516: *                    .    Bubble sort keeps complex conjugate
        !           517: *                    .    pairs together. ====
        !           518: *
        !           519:                      SORTED = .false.
        !           520:                      DO 50 K = KBOT, KS + 1, -1
        !           521:                         IF( SORTED )
        !           522:      $                     GO TO 60
        !           523:                         SORTED = .true.
        !           524:                         DO 40 I = KS, K - 1
        !           525:                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
        !           526:      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
        !           527:                               SORTED = .false.
        !           528: *
        !           529:                               SWAP = WR( I )
        !           530:                               WR( I ) = WR( I+1 )
        !           531:                               WR( I+1 ) = SWAP
        !           532: *
        !           533:                               SWAP = WI( I )
        !           534:                               WI( I ) = WI( I+1 )
        !           535:                               WI( I+1 ) = SWAP
        !           536:                            END IF
        !           537:    40                   CONTINUE
        !           538:    50                CONTINUE
        !           539:    60                CONTINUE
        !           540:                   END IF
        !           541: *
        !           542: *                 ==== Shuffle shifts into pairs of real shifts
        !           543: *                 .    and pairs of complex conjugate shifts
        !           544: *                 .    assuming complex conjugate shifts are
        !           545: *                 .    already adjacent to one another. (Yes,
        !           546: *                 .    they are.)  ====
        !           547: *
        !           548:                   DO 70 I = KBOT, KS + 2, -2
        !           549:                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
        !           550: *
        !           551:                         SWAP = WR( I )
        !           552:                         WR( I ) = WR( I-1 )
        !           553:                         WR( I-1 ) = WR( I-2 )
        !           554:                         WR( I-2 ) = SWAP
        !           555: *
        !           556:                         SWAP = WI( I )
        !           557:                         WI( I ) = WI( I-1 )
        !           558:                         WI( I-1 ) = WI( I-2 )
        !           559:                         WI( I-2 ) = SWAP
        !           560:                      END IF
        !           561:    70             CONTINUE
        !           562:                END IF
        !           563: *
        !           564: *              ==== If there are only two shifts and both are
        !           565: *              .    real, then use only one.  ====
        !           566: *
        !           567:                IF( KBOT-KS+1.EQ.2 ) THEN
        !           568:                   IF( WI( KBOT ).EQ.ZERO ) THEN
        !           569:                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
        !           570:      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
        !           571:                         WR( KBOT-1 ) = WR( KBOT )
        !           572:                      ELSE
        !           573:                         WR( KBOT ) = WR( KBOT-1 )
        !           574:                      END IF
        !           575:                   END IF
        !           576:                END IF
        !           577: *
        !           578: *              ==== Use up to NS of the the smallest magnatiude
        !           579: *              .    shifts.  If there aren't NS shifts available,
        !           580: *              .    then use them all, possibly dropping one to
        !           581: *              .    make the number of shifts even. ====
        !           582: *
        !           583:                NS = MIN( NS, KBOT-KS+1 )
        !           584:                NS = NS - MOD( NS, 2 )
        !           585:                KS = KBOT - NS + 1
        !           586: *
        !           587: *              ==== Small-bulge multi-shift QR sweep:
        !           588: *              .    split workspace under the subdiagonal into
        !           589: *              .    - a KDU-by-KDU work array U in the lower
        !           590: *              .      left-hand-corner,
        !           591: *              .    - a KDU-by-at-least-KDU-but-more-is-better
        !           592: *              .      (KDU-by-NHo) horizontal work array WH along
        !           593: *              .      the bottom edge,
        !           594: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
        !           595: *              .      (NVE-by-KDU) vertical work WV arrow along
        !           596: *              .      the left-hand-edge. ====
        !           597: *
        !           598:                KDU = 3*NS - 3
        !           599:                KU = N - KDU + 1
        !           600:                KWH = KDU + 1
        !           601:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
        !           602:                KWV = KDU + 4
        !           603:                NVE = N - KDU - KWV + 1
        !           604: *
        !           605: *              ==== Small-bulge multi-shift QR sweep ====
        !           606: *
        !           607:                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
        !           608:      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
        !           609:      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
        !           610:      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
        !           611:             END IF
        !           612: *
        !           613: *           ==== Note progress (or the lack of it). ====
        !           614: *
        !           615:             IF( LD.GT.0 ) THEN
        !           616:                NDFL = 1
        !           617:             ELSE
        !           618:                NDFL = NDFL + 1
        !           619:             END IF
        !           620: *
        !           621: *           ==== End of main loop ====
        !           622:    80    CONTINUE
        !           623: *
        !           624: *        ==== Iteration limit exceeded.  Set INFO to show where
        !           625: *        .    the problem occurred and exit. ====
        !           626: *
        !           627:          INFO = KBOT
        !           628:    90    CONTINUE
        !           629:       END IF
        !           630: *
        !           631: *     ==== Return the optimal value of LWORK. ====
        !           632: *
        !           633:       WORK( 1 ) = DBLE( LWKOPT )
        !           634: *
        !           635: *     ==== End of DLAQR0 ====
        !           636: *
        !           637:       END

CVSweb interface <joel.bertrand@systella.fr>