File:  [local] / rpl / lapack / lapack / dlaqps.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:33 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DLAQPS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAQPS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
   22: *                          VN2, AUXV, F, LDF )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            JPVT( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
   30: *      $                   VN1( * ), VN2( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLAQPS computes a step of QR factorization with column pivoting
   40: *> of a real M-by-N matrix A by using Blas-3.  It tries to factorize
   41: *> NB columns from A starting from the row OFFSET+1, and updates all
   42: *> of the matrix with Blas-3 xGEMM.
   43: *>
   44: *> In some cases, due to catastrophic cancellations, it cannot
   45: *> factorize NB columns.  Hence, the actual number of factorized
   46: *> columns is returned in KB.
   47: *>
   48: *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] M
   55: *> \verbatim
   56: *>          M is INTEGER
   57: *>          The number of rows of the matrix A. M >= 0.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] N
   61: *> \verbatim
   62: *>          N is INTEGER
   63: *>          The number of columns of the matrix A. N >= 0
   64: *> \endverbatim
   65: *>
   66: *> \param[in] OFFSET
   67: *> \verbatim
   68: *>          OFFSET is INTEGER
   69: *>          The number of rows of A that have been factorized in
   70: *>          previous steps.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NB
   74: *> \verbatim
   75: *>          NB is INTEGER
   76: *>          The number of columns to factorize.
   77: *> \endverbatim
   78: *>
   79: *> \param[out] KB
   80: *> \verbatim
   81: *>          KB is INTEGER
   82: *>          The number of columns actually factorized.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   88: *>          On entry, the M-by-N matrix A.
   89: *>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
   90: *>          factor obtained and block A(1:OFFSET,1:N) has been
   91: *>          accordingly pivoted, but no factorized.
   92: *>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
   93: *>          been updated.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>          The leading dimension of the array A. LDA >= max(1,M).
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] JPVT
  103: *> \verbatim
  104: *>          JPVT is INTEGER array, dimension (N)
  105: *>          JPVT(I) = K <==> Column K of the full matrix A has been
  106: *>          permuted into position I in AP.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] TAU
  110: *> \verbatim
  111: *>          TAU is DOUBLE PRECISION array, dimension (KB)
  112: *>          The scalar factors of the elementary reflectors.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] VN1
  116: *> \verbatim
  117: *>          VN1 is DOUBLE PRECISION array, dimension (N)
  118: *>          The vector with the partial column norms.
  119: *> \endverbatim
  120: *>
  121: *> \param[in,out] VN2
  122: *> \verbatim
  123: *>          VN2 is DOUBLE PRECISION array, dimension (N)
  124: *>          The vector with the exact column norms.
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] AUXV
  128: *> \verbatim
  129: *>          AUXV is DOUBLE PRECISION array, dimension (NB)
  130: *>          Auxiliar vector.
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] F
  134: *> \verbatim
  135: *>          F is DOUBLE PRECISION array, dimension (LDF,NB)
  136: *>          Matrix F**T = L*Y**T*A.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDF
  140: *> \verbatim
  141: *>          LDF is INTEGER
  142: *>          The leading dimension of the array F. LDF >= max(1,N).
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee 
  149: *> \author Univ. of California Berkeley 
  150: *> \author Univ. of Colorado Denver 
  151: *> \author NAG Ltd. 
  152: *
  153: *> \date November 2011
  154: *
  155: *> \ingroup doubleOTHERauxiliary
  156: *
  157: *> \par Contributors:
  158: *  ==================
  159: *>
  160: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  161: *>    X. Sun, Computer Science Dept., Duke University, USA
  162: *> \n
  163: *>  Partial column norm updating strategy modified on April 2011
  164: *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
  165: *>    University of Zagreb, Croatia.
  166: *
  167: *> \par References:
  168: *  ================
  169: *>
  170: *> LAPACK Working Note 176
  171: *
  172: *> \htmlonly
  173: *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
  174: *> \endhtmlonly 
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  178:      $                   VN2, AUXV, F, LDF )
  179: *
  180: *  -- LAPACK auxiliary routine (version 3.4.0) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     November 2011
  184: *
  185: *     .. Scalar Arguments ..
  186:       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
  187: *     ..
  188: *     .. Array Arguments ..
  189:       INTEGER            JPVT( * )
  190:       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
  191:      $                   VN1( * ), VN2( * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       DOUBLE PRECISION   ZERO, ONE
  198:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  199: *     ..
  200: *     .. Local Scalars ..
  201:       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
  202:       DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
  203: *     ..
  204: *     .. External Subroutines ..
  205:       EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
  206: *     ..
  207: *     .. Intrinsic Functions ..
  208:       INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
  209: *     ..
  210: *     .. External Functions ..
  211:       INTEGER            IDAMAX
  212:       DOUBLE PRECISION   DLAMCH, DNRM2
  213:       EXTERNAL           IDAMAX, DLAMCH, DNRM2
  214: *     ..
  215: *     .. Executable Statements ..
  216: *
  217:       LASTRK = MIN( M, N+OFFSET )
  218:       LSTICC = 0
  219:       K = 0
  220:       TOL3Z = SQRT(DLAMCH('Epsilon'))
  221: *
  222: *     Beginning of while loop.
  223: *
  224:    10 CONTINUE
  225:       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
  226:          K = K + 1
  227:          RK = OFFSET + K
  228: *
  229: *        Determine ith pivot column and swap if necessary
  230: *
  231:          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
  232:          IF( PVT.NE.K ) THEN
  233:             CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
  234:             CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
  235:             ITEMP = JPVT( PVT )
  236:             JPVT( PVT ) = JPVT( K )
  237:             JPVT( K ) = ITEMP
  238:             VN1( PVT ) = VN1( K )
  239:             VN2( PVT ) = VN2( K )
  240:          END IF
  241: *
  242: *        Apply previous Householder reflectors to column K:
  243: *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
  244: *
  245:          IF( K.GT.1 ) THEN
  246:             CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
  247:      $                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
  248:          END IF
  249: *
  250: *        Generate elementary reflector H(k).
  251: *
  252:          IF( RK.LT.M ) THEN
  253:             CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
  254:          ELSE
  255:             CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
  256:          END IF
  257: *
  258:          AKK = A( RK, K )
  259:          A( RK, K ) = ONE
  260: *
  261: *        Compute Kth column of F:
  262: *
  263: *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
  264: *
  265:          IF( K.LT.N ) THEN
  266:             CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
  267:      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
  268:      $                  F( K+1, K ), 1 )
  269:          END IF
  270: *
  271: *        Padding F(1:K,K) with zeros.
  272: *
  273:          DO 20 J = 1, K
  274:             F( J, K ) = ZERO
  275:    20    CONTINUE
  276: *
  277: *        Incremental updating of F:
  278: *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
  279: *                    *A(RK:M,K).
  280: *
  281:          IF( K.GT.1 ) THEN
  282:             CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
  283:      $                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
  284: *
  285:             CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
  286:      $                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
  287:          END IF
  288: *
  289: *        Update the current row of A:
  290: *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
  291: *
  292:          IF( K.LT.N ) THEN
  293:             CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
  294:      $                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
  295:          END IF
  296: *
  297: *        Update partial column norms.
  298: *
  299:          IF( RK.LT.LASTRK ) THEN
  300:             DO 30 J = K + 1, N
  301:                IF( VN1( J ).NE.ZERO ) THEN
  302: *
  303: *                 NOTE: The following 4 lines follow from the analysis in
  304: *                 Lapack Working Note 176.
  305: *
  306:                   TEMP = ABS( A( RK, J ) ) / VN1( J )
  307:                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
  308:                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
  309:                   IF( TEMP2 .LE. TOL3Z ) THEN
  310:                      VN2( J ) = DBLE( LSTICC )
  311:                      LSTICC = J
  312:                   ELSE
  313:                      VN1( J ) = VN1( J )*SQRT( TEMP )
  314:                   END IF
  315:                END IF
  316:    30       CONTINUE
  317:          END IF
  318: *
  319:          A( RK, K ) = AKK
  320: *
  321: *        End of while loop.
  322: *
  323:          GO TO 10
  324:       END IF
  325:       KB = K
  326:       RK = OFFSET + KB
  327: *
  328: *     Apply the block reflector to the rest of the matrix:
  329: *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
  330: *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
  331: *
  332:       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
  333:          CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
  334:      $               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
  335:      $               A( RK+1, KB+1 ), LDA )
  336:       END IF
  337: *
  338: *     Recomputation of difficult columns.
  339: *
  340:    40 CONTINUE
  341:       IF( LSTICC.GT.0 ) THEN
  342:          ITEMP = NINT( VN2( LSTICC ) )
  343:          VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
  344: *
  345: *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
  346: *        SNRM2 does not fail on vectors with norm below the value of
  347: *        SQRT(DLAMCH('S')) 
  348: *
  349:          VN2( LSTICC ) = VN1( LSTICC )
  350:          LSTICC = ITEMP
  351:          GO TO 40
  352:       END IF
  353: *
  354:       RETURN
  355: *
  356: *     End of DLAQPS
  357: *
  358:       END

CVSweb interface <joel.bertrand@systella.fr>