Annotation of rpl/lapack/lapack/dlaqps.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
                      2:      $                   VN2, AUXV, F, LDF )
                      3: *
1.5       bertrand    4: *  -- LAPACK auxiliary routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    7: *     June 2010
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            JPVT( * )
                     14:       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
                     15:      $                   VN1( * ), VN2( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLAQPS computes a step of QR factorization with column pivoting
                     22: *  of a real M-by-N matrix A by using Blas-3.  It tries to factorize
                     23: *  NB columns from A starting from the row OFFSET+1, and updates all
                     24: *  of the matrix with Blas-3 xGEMM.
                     25: *
                     26: *  In some cases, due to catastrophic cancellations, it cannot
                     27: *  factorize NB columns.  Hence, the actual number of factorized
                     28: *  columns is returned in KB.
                     29: *
                     30: *  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  M       (input) INTEGER
                     36: *          The number of rows of the matrix A. M >= 0.
                     37: *
                     38: *  N       (input) INTEGER
                     39: *          The number of columns of the matrix A. N >= 0
                     40: *
                     41: *  OFFSET  (input) INTEGER
                     42: *          The number of rows of A that have been factorized in
                     43: *          previous steps.
                     44: *
                     45: *  NB      (input) INTEGER
                     46: *          The number of columns to factorize.
                     47: *
                     48: *  KB      (output) INTEGER
                     49: *          The number of columns actually factorized.
                     50: *
                     51: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     52: *          On entry, the M-by-N matrix A.
                     53: *          On exit, block A(OFFSET+1:M,1:KB) is the triangular
                     54: *          factor obtained and block A(1:OFFSET,1:N) has been
                     55: *          accordingly pivoted, but no factorized.
                     56: *          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
                     57: *          been updated.
                     58: *
                     59: *  LDA     (input) INTEGER
                     60: *          The leading dimension of the array A. LDA >= max(1,M).
                     61: *
                     62: *  JPVT    (input/output) INTEGER array, dimension (N)
                     63: *          JPVT(I) = K <==> Column K of the full matrix A has been
                     64: *          permuted into position I in AP.
                     65: *
                     66: *  TAU     (output) DOUBLE PRECISION array, dimension (KB)
                     67: *          The scalar factors of the elementary reflectors.
                     68: *
                     69: *  VN1     (input/output) DOUBLE PRECISION array, dimension (N)
                     70: *          The vector with the partial column norms.
                     71: *
                     72: *  VN2     (input/output) DOUBLE PRECISION array, dimension (N)
                     73: *          The vector with the exact column norms.
                     74: *
                     75: *  AUXV    (input/output) DOUBLE PRECISION array, dimension (NB)
                     76: *          Auxiliar vector.
                     77: *
                     78: *  F       (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
                     79: *          Matrix F' = L*Y'*A.
                     80: *
                     81: *  LDF     (input) INTEGER
                     82: *          The leading dimension of the array F. LDF >= max(1,N).
                     83: *
                     84: *  Further Details
                     85: *  ===============
                     86: *
                     87: *  Based on contributions by
                     88: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                     89: *    X. Sun, Computer Science Dept., Duke University, USA
                     90: *
                     91: *  Partial column norm updating strategy modified by
                     92: *    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
                     93: *    University of Zagreb, Croatia.
1.5       bertrand   94: *     June 2010
1.1       bertrand   95: *  For more details see LAPACK Working Note 176.
                     96: *  =====================================================================
                     97: *
                     98: *     .. Parameters ..
                     99:       DOUBLE PRECISION   ZERO, ONE
                    100:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    101: *     ..
                    102: *     .. Local Scalars ..
                    103:       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
                    104:       DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
                    105: *     ..
                    106: *     .. External Subroutines ..
1.5       bertrand  107:       EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
1.1       bertrand  108: *     ..
                    109: *     .. Intrinsic Functions ..
                    110:       INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
                    111: *     ..
                    112: *     .. External Functions ..
                    113:       INTEGER            IDAMAX
                    114:       DOUBLE PRECISION   DLAMCH, DNRM2
                    115:       EXTERNAL           IDAMAX, DLAMCH, DNRM2
                    116: *     ..
                    117: *     .. Executable Statements ..
                    118: *
                    119:       LASTRK = MIN( M, N+OFFSET )
                    120:       LSTICC = 0
                    121:       K = 0
                    122:       TOL3Z = SQRT(DLAMCH('Epsilon'))
                    123: *
                    124: *     Beginning of while loop.
                    125: *
                    126:    10 CONTINUE
                    127:       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
                    128:          K = K + 1
                    129:          RK = OFFSET + K
                    130: *
                    131: *        Determine ith pivot column and swap if necessary
                    132: *
                    133:          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
                    134:          IF( PVT.NE.K ) THEN
                    135:             CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
                    136:             CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
                    137:             ITEMP = JPVT( PVT )
                    138:             JPVT( PVT ) = JPVT( K )
                    139:             JPVT( K ) = ITEMP
                    140:             VN1( PVT ) = VN1( K )
                    141:             VN2( PVT ) = VN2( K )
                    142:          END IF
                    143: *
                    144: *        Apply previous Householder reflectors to column K:
                    145: *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
                    146: *
                    147:          IF( K.GT.1 ) THEN
                    148:             CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
                    149:      $                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
                    150:          END IF
                    151: *
                    152: *        Generate elementary reflector H(k).
                    153: *
                    154:          IF( RK.LT.M ) THEN
1.5       bertrand  155:             CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
1.1       bertrand  156:          ELSE
1.5       bertrand  157:             CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
1.1       bertrand  158:          END IF
                    159: *
                    160:          AKK = A( RK, K )
                    161:          A( RK, K ) = ONE
                    162: *
                    163: *        Compute Kth column of F:
                    164: *
                    165: *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K).
                    166: *
                    167:          IF( K.LT.N ) THEN
                    168:             CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
                    169:      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
                    170:      $                  F( K+1, K ), 1 )
                    171:          END IF
                    172: *
                    173: *        Padding F(1:K,K) with zeros.
                    174: *
                    175:          DO 20 J = 1, K
                    176:             F( J, K ) = ZERO
                    177:    20    CONTINUE
                    178: *
                    179: *        Incremental updating of F:
                    180: *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'
                    181: *                    *A(RK:M,K).
                    182: *
                    183:          IF( K.GT.1 ) THEN
                    184:             CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
                    185:      $                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
                    186: *
                    187:             CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
                    188:      $                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
                    189:          END IF
                    190: *
                    191: *        Update the current row of A:
                    192: *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.
                    193: *
                    194:          IF( K.LT.N ) THEN
                    195:             CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
                    196:      $                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
                    197:          END IF
                    198: *
                    199: *        Update partial column norms.
                    200: *
                    201:          IF( RK.LT.LASTRK ) THEN
                    202:             DO 30 J = K + 1, N
                    203:                IF( VN1( J ).NE.ZERO ) THEN
                    204: *
                    205: *                 NOTE: The following 4 lines follow from the analysis in
                    206: *                 Lapack Working Note 176.
                    207: *
                    208:                   TEMP = ABS( A( RK, J ) ) / VN1( J )
                    209:                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                    210:                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                    211:                   IF( TEMP2 .LE. TOL3Z ) THEN
                    212:                      VN2( J ) = DBLE( LSTICC )
                    213:                      LSTICC = J
                    214:                   ELSE
                    215:                      VN1( J ) = VN1( J )*SQRT( TEMP )
                    216:                   END IF
                    217:                END IF
                    218:    30       CONTINUE
                    219:          END IF
                    220: *
                    221:          A( RK, K ) = AKK
                    222: *
                    223: *        End of while loop.
                    224: *
                    225:          GO TO 10
                    226:       END IF
                    227:       KB = K
                    228:       RK = OFFSET + KB
                    229: *
                    230: *     Apply the block reflector to the rest of the matrix:
                    231: *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
                    232: *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'.
                    233: *
                    234:       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
                    235:          CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
                    236:      $               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
                    237:      $               A( RK+1, KB+1 ), LDA )
                    238:       END IF
                    239: *
                    240: *     Recomputation of difficult columns.
                    241: *
                    242:    40 CONTINUE
                    243:       IF( LSTICC.GT.0 ) THEN
                    244:          ITEMP = NINT( VN2( LSTICC ) )
                    245:          VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
                    246: *
                    247: *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
                    248: *        SNRM2 does not fail on vectors with norm below the value of
                    249: *        SQRT(DLAMCH('S')) 
                    250: *
                    251:          VN2( LSTICC ) = VN1( LSTICC )
                    252:          LSTICC = ITEMP
                    253:          GO TO 40
                    254:       END IF
                    255: *
                    256:       RETURN
                    257: *
                    258: *     End of DLAQPS
                    259: *
                    260:       END

CVSweb interface <joel.bertrand@systella.fr>