Annotation of rpl/lapack/lapack/dlaqp2.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE DLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
                      2:      $                   WORK )
                      3: *
1.5       bertrand    4: *  -- LAPACK auxiliary routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    7: *     June 2010
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            LDA, M, N, OFFSET
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            JPVT( * )
                     14:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
                     15:      $                   WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLAQP2 computes a QR factorization with column pivoting of
                     22: *  the block A(OFFSET+1:M,1:N).
                     23: *  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
                     24: *
                     25: *  Arguments
                     26: *  =========
                     27: *
                     28: *  M       (input) INTEGER
                     29: *          The number of rows of the matrix A. M >= 0.
                     30: *
                     31: *  N       (input) INTEGER
                     32: *          The number of columns of the matrix A. N >= 0.
                     33: *
                     34: *  OFFSET  (input) INTEGER
                     35: *          The number of rows of the matrix A that must be pivoted
                     36: *          but no factorized. OFFSET >= 0.
                     37: *
                     38: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     39: *          On entry, the M-by-N matrix A.
                     40: *          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is 
                     41: *          the triangular factor obtained; the elements in block
                     42: *          A(OFFSET+1:M,1:N) below the diagonal, together with the
                     43: *          array TAU, represent the orthogonal matrix Q as a product of
                     44: *          elementary reflectors. Block A(1:OFFSET,1:N) has been
                     45: *          accordingly pivoted, but no factorized.
                     46: *
                     47: *  LDA     (input) INTEGER
                     48: *          The leading dimension of the array A. LDA >= max(1,M).
                     49: *
                     50: *  JPVT    (input/output) INTEGER array, dimension (N)
                     51: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     52: *          to the front of A*P (a leading column); if JPVT(i) = 0,
                     53: *          the i-th column of A is a free column.
                     54: *          On exit, if JPVT(i) = k, then the i-th column of A*P
                     55: *          was the k-th column of A.
                     56: *
                     57: *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
                     58: *          The scalar factors of the elementary reflectors.
                     59: *
                     60: *  VN1     (input/output) DOUBLE PRECISION array, dimension (N)
                     61: *          The vector with the partial column norms.
                     62: *
                     63: *  VN2     (input/output) DOUBLE PRECISION array, dimension (N)
                     64: *          The vector with the exact column norms.
                     65: *
                     66: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
                     67: *
                     68: *  Further Details
                     69: *  ===============
                     70: *
                     71: *  Based on contributions by
                     72: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                     73: *    X. Sun, Computer Science Dept., Duke University, USA
                     74: *
                     75: *  Partial column norm updating strategy modified by
                     76: *    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
                     77: *    University of Zagreb, Croatia.
1.5       bertrand   78: *     June 2010
1.1       bertrand   79: *  For more details see LAPACK Working Note 176.
                     80: *  =====================================================================
                     81: *
                     82: *     .. Parameters ..
                     83:       DOUBLE PRECISION   ZERO, ONE
                     84:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                     85: *     ..
                     86: *     .. Local Scalars ..
                     87:       INTEGER            I, ITEMP, J, MN, OFFPI, PVT
                     88:       DOUBLE PRECISION   AII, TEMP, TEMP2, TOL3Z
                     89: *     ..
                     90: *     .. External Subroutines ..
1.5       bertrand   91:       EXTERNAL           DLARF, DLARFG, DSWAP
1.1       bertrand   92: *     ..
                     93: *     .. Intrinsic Functions ..
                     94:       INTRINSIC          ABS, MAX, MIN, SQRT
                     95: *     ..
                     96: *     .. External Functions ..
                     97:       INTEGER            IDAMAX
                     98:       DOUBLE PRECISION   DLAMCH, DNRM2
                     99:       EXTERNAL           IDAMAX, DLAMCH, DNRM2
                    100: *     ..
                    101: *     .. Executable Statements ..
                    102: *
                    103:       MN = MIN( M-OFFSET, N )
                    104:       TOL3Z = SQRT(DLAMCH('Epsilon'))
                    105: *
                    106: *     Compute factorization.
                    107: *
                    108:       DO 20 I = 1, MN
                    109: *
                    110:          OFFPI = OFFSET + I
                    111: *
                    112: *        Determine ith pivot column and swap if necessary.
                    113: *
                    114:          PVT = ( I-1 ) + IDAMAX( N-I+1, VN1( I ), 1 )
                    115: *
                    116:          IF( PVT.NE.I ) THEN
                    117:             CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
                    118:             ITEMP = JPVT( PVT )
                    119:             JPVT( PVT ) = JPVT( I )
                    120:             JPVT( I ) = ITEMP
                    121:             VN1( PVT ) = VN1( I )
                    122:             VN2( PVT ) = VN2( I )
                    123:          END IF
                    124: *
                    125: *        Generate elementary reflector H(i).
                    126: *
                    127:          IF( OFFPI.LT.M ) THEN
1.5       bertrand  128:             CALL DLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
1.1       bertrand  129:      $                   TAU( I ) )
                    130:          ELSE
1.5       bertrand  131:             CALL DLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
1.1       bertrand  132:          END IF
                    133: *
                    134:          IF( I.LE.N ) THEN
                    135: *
                    136: *           Apply H(i)' to A(offset+i:m,i+1:n) from the left.
                    137: *
                    138:             AII = A( OFFPI, I )
                    139:             A( OFFPI, I ) = ONE
                    140:             CALL DLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
                    141:      $                  TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
                    142:             A( OFFPI, I ) = AII
                    143:          END IF
                    144: *
                    145: *        Update partial column norms.
                    146: *
                    147:          DO 10 J = I + 1, N
                    148:             IF( VN1( J ).NE.ZERO ) THEN
                    149: *
                    150: *              NOTE: The following 4 lines follow from the analysis in
                    151: *              Lapack Working Note 176.
                    152: *
                    153:                TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
                    154:                TEMP = MAX( TEMP, ZERO )
                    155:                TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                    156:                IF( TEMP2 .LE. TOL3Z ) THEN
                    157:                   IF( OFFPI.LT.M ) THEN
                    158:                      VN1( J ) = DNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
                    159:                      VN2( J ) = VN1( J )
                    160:                   ELSE
                    161:                      VN1( J ) = ZERO
                    162:                      VN2( J ) = ZERO
                    163:                   END IF
                    164:                ELSE
                    165:                   VN1( J ) = VN1( J )*SQRT( TEMP )
                    166:                END IF
                    167:             END IF
                    168:    10    CONTINUE
                    169: *
                    170:    20 CONTINUE
                    171: *
                    172:       RETURN
                    173: *
                    174: *     End of DLAQP2
                    175: *
                    176:       END

CVSweb interface <joel.bertrand@systella.fr>