Annotation of rpl/lapack/lapack/dlaqp2.f, revision 1.21

1.13      bertrand    1: *> \brief \b DLAQP2 computes a QR factorization with column pivoting of the matrix block.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.18      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.18      bertrand    9: *> Download DLAQP2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqp2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqp2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqp2.f">
1.10      bertrand   15: *> [TXT]</a>
1.18      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
                     22: *                          WORK )
1.18      bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            LDA, M, N, OFFSET
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            JPVT( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
                     30: *      $                   WORK( * )
                     31: *       ..
1.18      bertrand   32: *
1.10      bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLAQP2 computes a QR factorization with column pivoting of
                     40: *> the block A(OFFSET+1:M,1:N).
                     41: *> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] M
                     48: *> \verbatim
                     49: *>          M is INTEGER
                     50: *>          The number of rows of the matrix A. M >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The number of columns of the matrix A. N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] OFFSET
                     60: *> \verbatim
                     61: *>          OFFSET is INTEGER
                     62: *>          The number of rows of the matrix A that must be pivoted
                     63: *>          but no factorized. OFFSET >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in,out] A
                     67: *> \verbatim
                     68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     69: *>          On entry, the M-by-N matrix A.
1.18      bertrand   70: *>          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
1.10      bertrand   71: *>          the triangular factor obtained; the elements in block
                     72: *>          A(OFFSET+1:M,1:N) below the diagonal, together with the
                     73: *>          array TAU, represent the orthogonal matrix Q as a product of
                     74: *>          elementary reflectors. Block A(1:OFFSET,1:N) has been
                     75: *>          accordingly pivoted, but no factorized.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] LDA
                     79: *> \verbatim
                     80: *>          LDA is INTEGER
                     81: *>          The leading dimension of the array A. LDA >= max(1,M).
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in,out] JPVT
                     85: *> \verbatim
                     86: *>          JPVT is INTEGER array, dimension (N)
                     87: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     88: *>          to the front of A*P (a leading column); if JPVT(i) = 0,
                     89: *>          the i-th column of A is a free column.
                     90: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
                     91: *>          was the k-th column of A.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] TAU
                     95: *> \verbatim
                     96: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     97: *>          The scalar factors of the elementary reflectors.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in,out] VN1
                    101: *> \verbatim
                    102: *>          VN1 is DOUBLE PRECISION array, dimension (N)
                    103: *>          The vector with the partial column norms.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] VN2
                    107: *> \verbatim
                    108: *>          VN2 is DOUBLE PRECISION array, dimension (N)
                    109: *>          The vector with the exact column norms.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] WORK
                    113: *> \verbatim
                    114: *>          WORK is DOUBLE PRECISION array, dimension (N)
                    115: *> \endverbatim
                    116: *
                    117: *  Authors:
                    118: *  ========
                    119: *
1.18      bertrand  120: *> \author Univ. of Tennessee
                    121: *> \author Univ. of California Berkeley
                    122: *> \author Univ. of Colorado Denver
                    123: *> \author NAG Ltd.
1.10      bertrand  124: *
                    125: *> \ingroup doubleOTHERauxiliary
                    126: *
                    127: *> \par Contributors:
                    128: *  ==================
                    129: *>
                    130: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    131: *>    X. Sun, Computer Science Dept., Duke University, USA
                    132: *> \n
                    133: *>  Partial column norm updating strategy modified on April 2011
                    134: *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
                    135: *>    University of Zagreb, Croatia.
                    136: *
                    137: *> \par References:
                    138: *  ================
                    139: *>
                    140: *> LAPACK Working Note 176
                    141: *
                    142: *> \htmlonly
1.18      bertrand  143: *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
                    144: *> \endhtmlonly
1.10      bertrand  145: *
                    146: *  =====================================================================
1.1       bertrand  147:       SUBROUTINE DLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
                    148:      $                   WORK )
                    149: *
1.21    ! bertrand  150: *  -- LAPACK auxiliary routine --
1.1       bertrand  151: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    152: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    153: *
                    154: *     .. Scalar Arguments ..
                    155:       INTEGER            LDA, M, N, OFFSET
                    156: *     ..
                    157: *     .. Array Arguments ..
                    158:       INTEGER            JPVT( * )
                    159:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
                    160:      $                   WORK( * )
                    161: *     ..
                    162: *
                    163: *  =====================================================================
                    164: *
                    165: *     .. Parameters ..
                    166:       DOUBLE PRECISION   ZERO, ONE
                    167:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    168: *     ..
                    169: *     .. Local Scalars ..
                    170:       INTEGER            I, ITEMP, J, MN, OFFPI, PVT
                    171:       DOUBLE PRECISION   AII, TEMP, TEMP2, TOL3Z
                    172: *     ..
                    173: *     .. External Subroutines ..
1.5       bertrand  174:       EXTERNAL           DLARF, DLARFG, DSWAP
1.1       bertrand  175: *     ..
                    176: *     .. Intrinsic Functions ..
                    177:       INTRINSIC          ABS, MAX, MIN, SQRT
                    178: *     ..
                    179: *     .. External Functions ..
                    180:       INTEGER            IDAMAX
                    181:       DOUBLE PRECISION   DLAMCH, DNRM2
                    182:       EXTERNAL           IDAMAX, DLAMCH, DNRM2
                    183: *     ..
                    184: *     .. Executable Statements ..
                    185: *
                    186:       MN = MIN( M-OFFSET, N )
                    187:       TOL3Z = SQRT(DLAMCH('Epsilon'))
                    188: *
                    189: *     Compute factorization.
                    190: *
                    191:       DO 20 I = 1, MN
                    192: *
                    193:          OFFPI = OFFSET + I
                    194: *
                    195: *        Determine ith pivot column and swap if necessary.
                    196: *
                    197:          PVT = ( I-1 ) + IDAMAX( N-I+1, VN1( I ), 1 )
                    198: *
                    199:          IF( PVT.NE.I ) THEN
                    200:             CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
                    201:             ITEMP = JPVT( PVT )
                    202:             JPVT( PVT ) = JPVT( I )
                    203:             JPVT( I ) = ITEMP
                    204:             VN1( PVT ) = VN1( I )
                    205:             VN2( PVT ) = VN2( I )
                    206:          END IF
                    207: *
                    208: *        Generate elementary reflector H(i).
                    209: *
                    210:          IF( OFFPI.LT.M ) THEN
1.5       bertrand  211:             CALL DLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
1.1       bertrand  212:      $                   TAU( I ) )
                    213:          ELSE
1.5       bertrand  214:             CALL DLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
1.1       bertrand  215:          END IF
                    216: *
1.15      bertrand  217:          IF( I.LT.N ) THEN
1.1       bertrand  218: *
1.9       bertrand  219: *           Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
1.1       bertrand  220: *
                    221:             AII = A( OFFPI, I )
                    222:             A( OFFPI, I ) = ONE
                    223:             CALL DLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
                    224:      $                  TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
                    225:             A( OFFPI, I ) = AII
                    226:          END IF
                    227: *
                    228: *        Update partial column norms.
                    229: *
                    230:          DO 10 J = I + 1, N
                    231:             IF( VN1( J ).NE.ZERO ) THEN
                    232: *
                    233: *              NOTE: The following 4 lines follow from the analysis in
                    234: *              Lapack Working Note 176.
                    235: *
                    236:                TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
                    237:                TEMP = MAX( TEMP, ZERO )
                    238:                TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                    239:                IF( TEMP2 .LE. TOL3Z ) THEN
                    240:                   IF( OFFPI.LT.M ) THEN
                    241:                      VN1( J ) = DNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
                    242:                      VN2( J ) = VN1( J )
                    243:                   ELSE
                    244:                      VN1( J ) = ZERO
                    245:                      VN2( J ) = ZERO
                    246:                   END IF
                    247:                ELSE
                    248:                   VN1( J ) = VN1( J )*SQRT( TEMP )
                    249:                END IF
                    250:             END IF
                    251:    10    CONTINUE
                    252: *
                    253:    20 CONTINUE
                    254: *
                    255:       RETURN
                    256: *
                    257: *     End of DLAQP2
                    258: *
                    259:       END

CVSweb interface <joel.bertrand@systella.fr>