File:  [local] / rpl / lapack / lapack / dlaorhr_col_getrfnp2.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:55 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAORHR_COL_GETRFNP2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAORHR_GETRF2NP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), D( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DLAORHR_COL_GETRFNP2 computes the modified LU factorization without
   37: *> pivoting of a real general M-by-N matrix A. The factorization has
   38: *> the form:
   39: *>
   40: *>     A - S = L * U,
   41: *>
   42: *> where:
   43: *>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
   44: *>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
   45: *>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
   46: *>    i-1 steps of Gaussian elimination. This means that the diagonal
   47: *>    element at each step of "modified" Gaussian elimination is at
   48: *>    least one in absolute value (so that division-by-zero not
   49: *>    possible during the division by the diagonal element);
   50: *>
   51: *>    L is a M-by-N lower triangular matrix with unit diagonal elements
   52: *>    (lower trapezoidal if M > N);
   53: *>
   54: *>    and U is a M-by-N upper triangular matrix
   55: *>    (upper trapezoidal if M < N).
   56: *>
   57: *> This routine is an auxiliary routine used in the Householder
   58: *> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
   59: *> applied to an M-by-N matrix A with orthonormal columns, where each
   60: *> element is bounded by one in absolute value. With the choice of
   61: *> the matrix S above, one can show that the diagonal element at each
   62: *> step of Gaussian elimination is the largest (in absolute value) in
   63: *> the column on or below the diagonal, so that no pivoting is required
   64: *> for numerical stability [1].
   65: *>
   66: *> For more details on the Householder reconstruction algorithm,
   67: *> including the modified LU factorization, see [1].
   68: *>
   69: *> This is the recursive version of the LU factorization algorithm.
   70: *> Denote A - S by B. The algorithm divides the matrix B into four
   71: *> submatrices:
   72: *>
   73: *>        [  B11 | B12  ]  where B11 is n1 by n1,
   74: *>    B = [ -----|----- ]        B21 is (m-n1) by n1,
   75: *>        [  B21 | B22  ]        B12 is n1 by n2,
   76: *>                               B22 is (m-n1) by n2,
   77: *>                               with n1 = min(m,n)/2, n2 = n-n1.
   78: *>
   79: *>
   80: *> The subroutine calls itself to factor B11, solves for B21,
   81: *> solves for B12, updates B22, then calls itself to factor B22.
   82: *>
   83: *> For more details on the recursive LU algorithm, see [2].
   84: *>
   85: *> DLAORHR_COL_GETRFNP2 is called to factorize a block by the blocked
   86: *> routine DLAORHR_COL_GETRFNP, which uses blocked code calling
   87: *> Level 3 BLAS to update the submatrix. However, DLAORHR_COL_GETRFNP2
   88: *> is self-sufficient and can be used without DLAORHR_COL_GETRFNP.
   89: *>
   90: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
   91: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
   92: *>     E. Solomonik, J. Parallel Distrib. Comput.,
   93: *>     vol. 85, pp. 3-31, 2015.
   94: *>
   95: *> [2] "Recursion leads to automatic variable blocking for dense linear
   96: *>     algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
   97: *>     vol. 41, no. 6, pp. 737-755, 1997.
   98: *> \endverbatim
   99: *
  100: *  Arguments:
  101: *  ==========
  102: *
  103: *> \param[in] M
  104: *> \verbatim
  105: *>          M is INTEGER
  106: *>          The number of rows of the matrix A.  M >= 0.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] N
  110: *> \verbatim
  111: *>          N is INTEGER
  112: *>          The number of columns of the matrix A.  N >= 0.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] A
  116: *> \verbatim
  117: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  118: *>          On entry, the M-by-N matrix to be factored.
  119: *>          On exit, the factors L and U from the factorization
  120: *>          A-S=L*U; the unit diagonal elements of L are not stored.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDA
  124: *> \verbatim
  125: *>          LDA is INTEGER
  126: *>          The leading dimension of the array A.  LDA >= max(1,M).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] D
  130: *> \verbatim
  131: *>          D is DOUBLE PRECISION array, dimension min(M,N)
  132: *>          The diagonal elements of the diagonal M-by-N sign matrix S,
  133: *>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
  134: *>          be only plus or minus one.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>          = 0:  successful exit
  141: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  142: *> \endverbatim
  143: *>
  144: *  Authors:
  145: *  ========
  146: *
  147: *> \author Univ. of Tennessee
  148: *> \author Univ. of California Berkeley
  149: *> \author Univ. of Colorado Denver
  150: *> \author NAG Ltd.
  151: *
  152: *> \ingroup doubleGEcomputational
  153: *
  154: *> \par Contributors:
  155: *  ==================
  156: *>
  157: *> \verbatim
  158: *>
  159: *> November 2019, Igor Kozachenko,
  160: *>                Computer Science Division,
  161: *>                University of California, Berkeley
  162: *>
  163: *> \endverbatim
  164: *
  165: *  =====================================================================
  166:       RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
  167:       IMPLICIT NONE
  168: *
  169: *  -- LAPACK computational routine --
  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172: *
  173: *     .. Scalar Arguments ..
  174:       INTEGER            INFO, LDA, M, N
  175: *     ..
  176: *     .. Array Arguments ..
  177:       DOUBLE PRECISION   A( LDA, * ), D( * )
  178: *     ..
  179: *
  180: *  =====================================================================
  181: *
  182: *     .. Parameters ..
  183:       DOUBLE PRECISION   ONE
  184:       PARAMETER          ( ONE = 1.0D+0 )
  185: *     ..
  186: *     .. Local Scalars ..
  187:       DOUBLE PRECISION   SFMIN
  188:       INTEGER            I, IINFO, N1, N2
  189: *     ..
  190: *     .. External Functions ..
  191:       DOUBLE PRECISION   DLAMCH
  192:       EXTERNAL           DLAMCH
  193: *     ..
  194: *     .. External Subroutines ..
  195:       EXTERNAL           DGEMM, DSCAL, DTRSM, XERBLA
  196: *     ..
  197: *     .. Intrinsic Functions ..
  198:       INTRINSIC          ABS, DSIGN, MAX, MIN
  199: *     ..
  200: *     .. Executable Statements ..
  201: *
  202: *     Test the input parameters
  203: *
  204:       INFO = 0
  205:       IF( M.LT.0 ) THEN
  206:          INFO = -1
  207:       ELSE IF( N.LT.0 ) THEN
  208:          INFO = -2
  209:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  210:          INFO = -4
  211:       END IF
  212:       IF( INFO.NE.0 ) THEN
  213:          CALL XERBLA( 'DLAORHR_COL_GETRFNP2', -INFO )
  214:          RETURN
  215:       END IF
  216: *
  217: *     Quick return if possible
  218: *
  219:       IF( MIN( M, N ).EQ.0 )
  220:      $   RETURN
  221: 
  222:       IF ( M.EQ.1 ) THEN
  223: *
  224: *        One row case, (also recursion termination case),
  225: *        use unblocked code
  226: *
  227: *        Transfer the sign
  228: *
  229:          D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
  230: *
  231: *        Construct the row of U
  232: *
  233:          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
  234: *
  235:       ELSE IF( N.EQ.1 ) THEN
  236: *
  237: *        One column case, (also recursion termination case),
  238: *        use unblocked code
  239: *
  240: *        Transfer the sign
  241: *
  242:          D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
  243: *
  244: *        Construct the row of U
  245: *
  246:          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
  247: *
  248: *        Scale the elements 2:M of the column
  249: *
  250: *        Determine machine safe minimum
  251: *
  252:          SFMIN = DLAMCH('S')
  253: *
  254: *        Construct the subdiagonal elements of L
  255: *
  256:          IF( ABS( A( 1, 1 ) ) .GE. SFMIN ) THEN
  257:             CALL DSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
  258:          ELSE
  259:             DO I = 2, M
  260:                A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
  261:             END DO
  262:          END IF
  263: *
  264:       ELSE
  265: *
  266: *        Divide the matrix B into four submatrices
  267: *
  268:          N1 = MIN( M, N ) / 2
  269:          N2 = N-N1
  270: 
  271: *
  272: *        Factor B11, recursive call
  273: *
  274:          CALL DLAORHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
  275: *
  276: *        Solve for B21
  277: *
  278:          CALL DTRSM( 'R', 'U', 'N', 'N', M-N1, N1, ONE, A, LDA,
  279:      $               A( N1+1, 1 ), LDA )
  280: *
  281: *        Solve for B12
  282: *
  283:          CALL DTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
  284:      $               A( 1, N1+1 ), LDA )
  285: *
  286: *        Update B22, i.e. compute the Schur complement
  287: *        B22 := B22 - B21*B12
  288: *
  289:          CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
  290:      $               A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
  291: *
  292: *        Factor B22, recursive call
  293: *
  294:          CALL DLAORHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
  295:      $                              D( N1+1 ), IINFO )
  296: *
  297:       END IF
  298:       RETURN
  299: *
  300: *     End of DLAORHR_COL_GETRFNP2
  301: *
  302:       END

CVSweb interface <joel.bertrand@systella.fr>