Annotation of rpl/lapack/lapack/dlaorhr_col_getrfnp.f, revision 1.2

1.1       bertrand    1: *> \brief \b DLAORHR_COL_GETRFNP
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAORHR_COL_GETRFNP + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), D( * )
                     28: *       ..
                     29: *
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DLAORHR_COL_GETRFNP computes the modified LU factorization without
                     37: *> pivoting of a real general M-by-N matrix A. The factorization has
                     38: *> the form:
                     39: *>
                     40: *>     A - S = L * U,
                     41: *>
                     42: *> where:
                     43: *>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
                     44: *>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
                     45: *>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
                     46: *>    i-1 steps of Gaussian elimination. This means that the diagonal
                     47: *>    element at each step of "modified" Gaussian elimination is
                     48: *>    at least one in absolute value (so that division-by-zero not
                     49: *>    not possible during the division by the diagonal element);
                     50: *>
                     51: *>    L is a M-by-N lower triangular matrix with unit diagonal elements
                     52: *>    (lower trapezoidal if M > N);
                     53: *>
                     54: *>    and U is a M-by-N upper triangular matrix
                     55: *>    (upper trapezoidal if M < N).
                     56: *>
                     57: *> This routine is an auxiliary routine used in the Householder
                     58: *> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
                     59: *> applied to an M-by-N matrix A with orthonormal columns, where each
                     60: *> element is bounded by one in absolute value. With the choice of
                     61: *> the matrix S above, one can show that the diagonal element at each
                     62: *> step of Gaussian elimination is the largest (in absolute value) in
                     63: *> the column on or below the diagonal, so that no pivoting is required
                     64: *> for numerical stability [1].
                     65: *>
                     66: *> For more details on the Householder reconstruction algorithm,
                     67: *> including the modified LU factorization, see [1].
                     68: *>
                     69: *> This is the blocked right-looking version of the algorithm,
                     70: *> calling Level 3 BLAS to update the submatrix. To factorize a block,
                     71: *> this routine calls the recursive routine DLAORHR_COL_GETRFNP2.
                     72: *>
                     73: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
                     74: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                     75: *>     E. Solomonik, J. Parallel Distrib. Comput.,
                     76: *>     vol. 85, pp. 3-31, 2015.
                     77: *> \endverbatim
                     78: *
                     79: *  Arguments:
                     80: *  ==========
                     81: *
                     82: *> \param[in] M
                     83: *> \verbatim
                     84: *>          M is INTEGER
                     85: *>          The number of rows of the matrix A.  M >= 0.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] N
                     89: *> \verbatim
                     90: *>          N is INTEGER
                     91: *>          The number of columns of the matrix A.  N >= 0.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in,out] A
                     95: *> \verbatim
                     96: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     97: *>          On entry, the M-by-N matrix to be factored.
                     98: *>          On exit, the factors L and U from the factorization
                     99: *>          A-S=L*U; the unit diagonal elements of L are not stored.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] D
                    109: *> \verbatim
                    110: *>          D is DOUBLE PRECISION array, dimension min(M,N)
                    111: *>          The diagonal elements of the diagonal M-by-N sign matrix S,
                    112: *>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
                    113: *>          be only plus or minus one.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] INFO
                    117: *> \verbatim
                    118: *>          INFO is INTEGER
                    119: *>          = 0:  successful exit
                    120: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    121: *> \endverbatim
                    122: *>
                    123: *  Authors:
                    124: *  ========
                    125: *
                    126: *> \author Univ. of Tennessee
                    127: *> \author Univ. of California Berkeley
                    128: *> \author Univ. of Colorado Denver
                    129: *> \author NAG Ltd.
                    130: *
                    131: *> \ingroup doubleGEcomputational
                    132: *
                    133: *> \par Contributors:
                    134: *  ==================
                    135: *>
                    136: *> \verbatim
                    137: *>
                    138: *> November 2019, Igor Kozachenko,
                    139: *>                Computer Science Division,
                    140: *>                University of California, Berkeley
                    141: *>
                    142: *> \endverbatim
                    143: *
                    144: *  =====================================================================
                    145:       SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
                    146:       IMPLICIT NONE
                    147: *
1.2     ! bertrand  148: *  -- LAPACK computational routine --
1.1       bertrand  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    151: *
                    152: *     .. Scalar Arguments ..
                    153:       INTEGER            INFO, LDA, M, N
                    154: *     ..
                    155: *     .. Array Arguments ..
                    156:       DOUBLE PRECISION   A( LDA, * ), D( * )
                    157: *     ..
                    158: *
                    159: *  =====================================================================
                    160: *
                    161: *     .. Parameters ..
                    162:       DOUBLE PRECISION   ONE
                    163:       PARAMETER          ( ONE = 1.0D+0 )
                    164: *     ..
                    165: *     .. Local Scalars ..
                    166:       INTEGER            IINFO, J, JB, NB
                    167: *     ..
                    168: *     .. External Subroutines ..
                    169:       EXTERNAL           DGEMM, DLAORHR_COL_GETRFNP2, DTRSM, XERBLA
                    170: *     ..
                    171: *     .. External Functions ..
                    172:       INTEGER            ILAENV
                    173:       EXTERNAL           ILAENV
                    174: *     ..
                    175: *     .. Intrinsic Functions ..
                    176:       INTRINSIC          MAX, MIN
                    177: *     ..
                    178: *     .. Executable Statements ..
                    179: *
                    180: *     Test the input parameters.
                    181: *
                    182:       INFO = 0
                    183:       IF( M.LT.0 ) THEN
                    184:          INFO = -1
                    185:       ELSE IF( N.LT.0 ) THEN
                    186:          INFO = -2
                    187:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    188:          INFO = -4
                    189:       END IF
                    190:       IF( INFO.NE.0 ) THEN
                    191:          CALL XERBLA( 'DLAORHR_COL_GETRFNP', -INFO )
                    192:          RETURN
                    193:       END IF
                    194: *
                    195: *     Quick return if possible
                    196: *
                    197:       IF( MIN( M, N ).EQ.0 )
                    198:      $   RETURN
                    199: *
                    200: *     Determine the block size for this environment.
                    201: *
                    202: 
                    203:       NB = ILAENV( 1, 'DLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 )
                    204: 
                    205:       IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
                    206: *
                    207: *        Use unblocked code.
                    208: *
                    209:          CALL DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
                    210:       ELSE
                    211: *
                    212: *        Use blocked code.
                    213: *
                    214:          DO J = 1, MIN( M, N ), NB
                    215:             JB = MIN( MIN( M, N )-J+1, NB )
                    216: *
                    217: *           Factor diagonal and subdiagonal blocks.
                    218: *
                    219:             CALL DLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
                    220:      $                                 D( J ), IINFO )
                    221: *
                    222:             IF( J+JB.LE.N ) THEN
                    223: *
                    224: *              Compute block row of U.
                    225: *
                    226:                CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
                    227:      $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
                    228:      $                     LDA )
                    229:                IF( J+JB.LE.M ) THEN
                    230: *
                    231: *                 Update trailing submatrix.
                    232: *
                    233:                   CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
                    234:      $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
                    235:      $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
                    236:      $                        LDA )
                    237:                END IF
                    238:             END IF
                    239:          END DO
                    240:       END IF
                    241:       RETURN
                    242: *
                    243: *     End of DLAORHR_COL_GETRFNP
                    244: *
                    245:       END

CVSweb interface <joel.bertrand@systella.fr>