File:  [local] / rpl / lapack / lapack / dlanv2.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:18 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DLANV2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLANV2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanv2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanv2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanv2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
   22:    23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
   25: *       ..
   26: *  
   27: *
   28: *> \par Purpose:
   29: *  =============
   30: *>
   31: *> \verbatim
   32: *>
   33: *> DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
   34: *> matrix in standard form:
   35: *>
   36: *>      [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
   37: *>      [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
   38: *>
   39: *> where either
   40: *> 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
   41: *> 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
   42: *> conjugate eigenvalues.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in,out] A
   49: *> \verbatim
   50: *>          A is DOUBLE PRECISION
   51: *> \endverbatim
   52: *>
   53: *> \param[in,out] B
   54: *> \verbatim
   55: *>          B is DOUBLE PRECISION
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] C
   59: *> \verbatim
   60: *>          C is DOUBLE PRECISION
   61: *> \endverbatim
   62: *>
   63: *> \param[in,out] D
   64: *> \verbatim
   65: *>          D is DOUBLE PRECISION
   66: *>          On entry, the elements of the input matrix.
   67: *>          On exit, they are overwritten by the elements of the
   68: *>          standardised Schur form.
   69: *> \endverbatim
   70: *>
   71: *> \param[out] RT1R
   72: *> \verbatim
   73: *>          RT1R is DOUBLE PRECISION
   74: *> \endverbatim
   75: *>
   76: *> \param[out] RT1I
   77: *> \verbatim
   78: *>          RT1I is DOUBLE PRECISION
   79: *> \endverbatim
   80: *>
   81: *> \param[out] RT2R
   82: *> \verbatim
   83: *>          RT2R is DOUBLE PRECISION
   84: *> \endverbatim
   85: *>
   86: *> \param[out] RT2I
   87: *> \verbatim
   88: *>          RT2I is DOUBLE PRECISION
   89: *>          The real and imaginary parts of the eigenvalues. If the
   90: *>          eigenvalues are a complex conjugate pair, RT1I > 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[out] CS
   94: *> \verbatim
   95: *>          CS is DOUBLE PRECISION
   96: *> \endverbatim
   97: *>
   98: *> \param[out] SN
   99: *> \verbatim
  100: *>          SN is DOUBLE PRECISION
  101: *>          Parameters of the rotation matrix.
  102: *> \endverbatim
  103: *
  104: *  Authors:
  105: *  ========
  106: *
  107: *> \author Univ. of Tennessee 
  108: *> \author Univ. of California Berkeley 
  109: *> \author Univ. of Colorado Denver 
  110: *> \author NAG Ltd. 
  111: *
  112: *> \date November 2011
  113: *
  114: *> \ingroup doubleOTHERauxiliary
  115: *
  116: *> \par Further Details:
  117: *  =====================
  118: *>
  119: *> \verbatim
  120: *>
  121: *>  Modified by V. Sima, Research Institute for Informatics, Bucharest,
  122: *>  Romania, to reduce the risk of cancellation errors,
  123: *>  when computing real eigenvalues, and to ensure, if possible, that
  124: *>  abs(RT1R) >= abs(RT2R).
  125: *> \endverbatim
  126: *>
  127: *  =====================================================================
  128:       SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
  129: *
  130: *  -- LAPACK auxiliary routine (version 3.4.0) --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *     November 2011
  134: *
  135: *     .. Scalar Arguments ..
  136:       DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
  137: *     ..
  138: *
  139: *  =====================================================================
  140: *
  141: *     .. Parameters ..
  142:       DOUBLE PRECISION   ZERO, HALF, ONE
  143:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  144:       DOUBLE PRECISION   MULTPL
  145:       PARAMETER          ( MULTPL = 4.0D+0 )
  146: *     ..
  147: *     .. Local Scalars ..
  148:       DOUBLE PRECISION   AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
  149:      $                   SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z
  150: *     ..
  151: *     .. External Functions ..
  152:       DOUBLE PRECISION   DLAMCH, DLAPY2
  153:       EXTERNAL           DLAMCH, DLAPY2
  154: *     ..
  155: *     .. Intrinsic Functions ..
  156:       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
  157: *     ..
  158: *     .. Executable Statements ..
  159: *
  160:       EPS = DLAMCH( 'P' )
  161:       IF( C.EQ.ZERO ) THEN
  162:          CS = ONE
  163:          SN = ZERO
  164:          GO TO 10
  165: *
  166:       ELSE IF( B.EQ.ZERO ) THEN
  167: *
  168: *        Swap rows and columns
  169: *
  170:          CS = ZERO
  171:          SN = ONE
  172:          TEMP = D
  173:          D = A
  174:          A = TEMP
  175:          B = -C
  176:          C = ZERO
  177:          GO TO 10
  178:       ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
  179:      $          THEN
  180:          CS = ONE
  181:          SN = ZERO
  182:          GO TO 10
  183:       ELSE
  184: *
  185:          TEMP = A - D
  186:          P = HALF*TEMP
  187:          BCMAX = MAX( ABS( B ), ABS( C ) )
  188:          BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
  189:          SCALE = MAX( ABS( P ), BCMAX )
  190:          Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
  191: *
  192: *        If Z is of the order of the machine accuracy, postpone the
  193: *        decision on the nature of eigenvalues
  194: *
  195:          IF( Z.GE.MULTPL*EPS ) THEN
  196: *
  197: *           Real eigenvalues. Compute A and D.
  198: *
  199:             Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
  200:             A = D + Z
  201:             D = D - ( BCMAX / Z )*BCMIS
  202: *
  203: *           Compute B and the rotation matrix
  204: *
  205:             TAU = DLAPY2( C, Z )
  206:             CS = Z / TAU
  207:             SN = C / TAU
  208:             B = B - C
  209:             C = ZERO
  210:          ELSE
  211: *
  212: *           Complex eigenvalues, or real (almost) equal eigenvalues.
  213: *           Make diagonal elements equal.
  214: *
  215:             SIGMA = B + C
  216:             TAU = DLAPY2( SIGMA, TEMP )
  217:             CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
  218:             SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
  219: *
  220: *           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
  221: *                   [ CC  DD ]   [ C  D ] [ SN  CS ]
  222: *
  223:             AA = A*CS + B*SN
  224:             BB = -A*SN + B*CS
  225:             CC = C*CS + D*SN
  226:             DD = -C*SN + D*CS
  227: *
  228: *           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
  229: *                   [ C  D ]   [-SN  CS ] [ CC  DD ]
  230: *
  231:             A = AA*CS + CC*SN
  232:             B = BB*CS + DD*SN
  233:             C = -AA*SN + CC*CS
  234:             D = -BB*SN + DD*CS
  235: *
  236:             TEMP = HALF*( A+D )
  237:             A = TEMP
  238:             D = TEMP
  239: *
  240:             IF( C.NE.ZERO ) THEN
  241:                IF( B.NE.ZERO ) THEN
  242:                   IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
  243: *
  244: *                    Real eigenvalues: reduce to upper triangular form
  245: *
  246:                      SAB = SQRT( ABS( B ) )
  247:                      SAC = SQRT( ABS( C ) )
  248:                      P = SIGN( SAB*SAC, C )
  249:                      TAU = ONE / SQRT( ABS( B+C ) )
  250:                      A = TEMP + P
  251:                      D = TEMP - P
  252:                      B = B - C
  253:                      C = ZERO
  254:                      CS1 = SAB*TAU
  255:                      SN1 = SAC*TAU
  256:                      TEMP = CS*CS1 - SN*SN1
  257:                      SN = CS*SN1 + SN*CS1
  258:                      CS = TEMP
  259:                   END IF
  260:                ELSE
  261:                   B = -C
  262:                   C = ZERO
  263:                   TEMP = CS
  264:                   CS = -SN
  265:                   SN = TEMP
  266:                END IF
  267:             END IF
  268:          END IF
  269: *
  270:       END IF
  271: *
  272:    10 CONTINUE
  273: *
  274: *     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
  275: *
  276:       RT1R = A
  277:       RT2R = D
  278:       IF( C.EQ.ZERO ) THEN
  279:          RT1I = ZERO
  280:          RT2I = ZERO
  281:       ELSE
  282:          RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
  283:          RT2I = -RT1I
  284:       END IF
  285:       RETURN
  286: *
  287: *     End of DLANV2
  288: *
  289:       END

CVSweb interface <joel.bertrand@systella.fr>