File:  [local] / rpl / lapack / lapack / dlantr.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:45:59 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLANTR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
   22: *                        WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            LDA, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLANTR  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> trapezoidal or triangular matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return DLANTR
   44: *> \verbatim
   45: *>
   46: *>    DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in DLANTR as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the matrix A is upper or lower trapezoidal.
   74: *>          = 'U':  Upper trapezoidal
   75: *>          = 'L':  Lower trapezoidal
   76: *>          Note that A is triangular instead of trapezoidal if M = N.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] DIAG
   80: *> \verbatim
   81: *>          DIAG is CHARACTER*1
   82: *>          Specifies whether or not the matrix A has unit diagonal.
   83: *>          = 'N':  Non-unit diagonal
   84: *>          = 'U':  Unit diagonal
   85: *> \endverbatim
   86: *>
   87: *> \param[in] M
   88: *> \verbatim
   89: *>          M is INTEGER
   90: *>          The number of rows of the matrix A.  M >= 0, and if
   91: *>          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] N
   95: *> \verbatim
   96: *>          N is INTEGER
   97: *>          The number of columns of the matrix A.  N >= 0, and if
   98: *>          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] A
  102: *> \verbatim
  103: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  104: *>          The trapezoidal matrix A (A is triangular if M = N).
  105: *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
  106: *>          the array A contains the upper trapezoidal matrix, and the
  107: *>          strictly lower triangular part of A is not referenced.
  108: *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
  109: *>          the array A contains the lower trapezoidal matrix, and the
  110: *>          strictly upper triangular part of A is not referenced.  Note
  111: *>          that when DIAG = 'U', the diagonal elements of A are not
  112: *>          referenced and are assumed to be one.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>          The leading dimension of the array A.  LDA >= max(M,1).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] WORK
  122: *> \verbatim
  123: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124: *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  125: *>          referenced.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee
  132: *> \author Univ. of California Berkeley
  133: *> \author Univ. of Colorado Denver
  134: *> \author NAG Ltd.
  135: *
  136: *> \date December 2016
  137: *
  138: *> \ingroup doubleOTHERauxiliary
  139: *
  140: *  =====================================================================
  141:       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  142:      $                 WORK )
  143: *
  144: *  -- LAPACK auxiliary routine (version 3.7.0) --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *     December 2016
  148: *
  149:       IMPLICIT NONE
  150: *     .. Scalar Arguments ..
  151:       CHARACTER          DIAG, NORM, UPLO
  152:       INTEGER            LDA, M, N
  153: *     ..
  154: *     .. Array Arguments ..
  155:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  156: *     ..
  157: *
  158: * =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION   ONE, ZERO
  162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163: *     ..
  164: *     .. Local Scalars ..
  165:       LOGICAL            UDIAG
  166:       INTEGER            I, J
  167:       DOUBLE PRECISION   SUM, VALUE
  168: *     ..
  169: *     .. Local Arrays ..
  170:       DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
  171: *     ..
  172: *     .. External Functions ..
  173:       LOGICAL            LSAME, DISNAN
  174:       EXTERNAL           LSAME, DISNAN
  175: *     ..
  176: *     .. External Subroutines ..
  177:       EXTERNAL           DLASSQ, DCOMBSSQ
  178: *     ..
  179: *     .. Intrinsic Functions ..
  180:       INTRINSIC          ABS, MIN, SQRT
  181: *     ..
  182: *     .. Executable Statements ..
  183: *
  184:       IF( MIN( M, N ).EQ.0 ) THEN
  185:          VALUE = ZERO
  186:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  187: *
  188: *        Find max(abs(A(i,j))).
  189: *
  190:          IF( LSAME( DIAG, 'U' ) ) THEN
  191:             VALUE = ONE
  192:             IF( LSAME( UPLO, 'U' ) ) THEN
  193:                DO 20 J = 1, N
  194:                   DO 10 I = 1, MIN( M, J-1 )
  195:                      SUM = ABS( A( I, J ) )
  196:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  197:    10             CONTINUE
  198:    20          CONTINUE
  199:             ELSE
  200:                DO 40 J = 1, N
  201:                   DO 30 I = J + 1, M
  202:                      SUM = ABS( A( I, J ) )
  203:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  204:    30             CONTINUE
  205:    40          CONTINUE
  206:             END IF
  207:          ELSE
  208:             VALUE = ZERO
  209:             IF( LSAME( UPLO, 'U' ) ) THEN
  210:                DO 60 J = 1, N
  211:                   DO 50 I = 1, MIN( M, J )
  212:                      SUM = ABS( A( I, J ) )
  213:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  214:    50             CONTINUE
  215:    60          CONTINUE
  216:             ELSE
  217:                DO 80 J = 1, N
  218:                   DO 70 I = J, M
  219:                      SUM = ABS( A( I, J ) )
  220:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  221:    70             CONTINUE
  222:    80          CONTINUE
  223:             END IF
  224:          END IF
  225:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  226: *
  227: *        Find norm1(A).
  228: *
  229:          VALUE = ZERO
  230:          UDIAG = LSAME( DIAG, 'U' )
  231:          IF( LSAME( UPLO, 'U' ) ) THEN
  232:             DO 110 J = 1, N
  233:                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  234:                   SUM = ONE
  235:                   DO 90 I = 1, J - 1
  236:                      SUM = SUM + ABS( A( I, J ) )
  237:    90             CONTINUE
  238:                ELSE
  239:                   SUM = ZERO
  240:                   DO 100 I = 1, MIN( M, J )
  241:                      SUM = SUM + ABS( A( I, J ) )
  242:   100             CONTINUE
  243:                END IF
  244:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  245:   110       CONTINUE
  246:          ELSE
  247:             DO 140 J = 1, N
  248:                IF( UDIAG ) THEN
  249:                   SUM = ONE
  250:                   DO 120 I = J + 1, M
  251:                      SUM = SUM + ABS( A( I, J ) )
  252:   120             CONTINUE
  253:                ELSE
  254:                   SUM = ZERO
  255:                   DO 130 I = J, M
  256:                      SUM = SUM + ABS( A( I, J ) )
  257:   130             CONTINUE
  258:                END IF
  259:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  260:   140       CONTINUE
  261:          END IF
  262:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  263: *
  264: *        Find normI(A).
  265: *
  266:          IF( LSAME( UPLO, 'U' ) ) THEN
  267:             IF( LSAME( DIAG, 'U' ) ) THEN
  268:                DO 150 I = 1, M
  269:                   WORK( I ) = ONE
  270:   150          CONTINUE
  271:                DO 170 J = 1, N
  272:                   DO 160 I = 1, MIN( M, J-1 )
  273:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  274:   160             CONTINUE
  275:   170          CONTINUE
  276:             ELSE
  277:                DO 180 I = 1, M
  278:                   WORK( I ) = ZERO
  279:   180          CONTINUE
  280:                DO 200 J = 1, N
  281:                   DO 190 I = 1, MIN( M, J )
  282:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  283:   190             CONTINUE
  284:   200          CONTINUE
  285:             END IF
  286:          ELSE
  287:             IF( LSAME( DIAG, 'U' ) ) THEN
  288:                DO 210 I = 1, N
  289:                   WORK( I ) = ONE
  290:   210          CONTINUE
  291:                DO 220 I = N + 1, M
  292:                   WORK( I ) = ZERO
  293:   220          CONTINUE
  294:                DO 240 J = 1, N
  295:                   DO 230 I = J + 1, M
  296:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  297:   230             CONTINUE
  298:   240          CONTINUE
  299:             ELSE
  300:                DO 250 I = 1, M
  301:                   WORK( I ) = ZERO
  302:   250          CONTINUE
  303:                DO 270 J = 1, N
  304:                   DO 260 I = J, M
  305:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  306:   260             CONTINUE
  307:   270          CONTINUE
  308:             END IF
  309:          END IF
  310:          VALUE = ZERO
  311:          DO 280 I = 1, M
  312:             SUM = WORK( I )
  313:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  314:   280    CONTINUE
  315:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  316: *
  317: *        Find normF(A).
  318: *        SSQ(1) is scale
  319: *        SSQ(2) is sum-of-squares
  320: *        For better accuracy, sum each column separately.
  321: *
  322:          IF( LSAME( UPLO, 'U' ) ) THEN
  323:             IF( LSAME( DIAG, 'U' ) ) THEN
  324:                SSQ( 1 ) = ONE
  325:                SSQ( 2 ) = MIN( M, N )
  326:                DO 290 J = 2, N
  327:                   COLSSQ( 1 ) = ZERO
  328:                   COLSSQ( 2 ) = ONE
  329:                   CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1,
  330:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  331:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  332:   290          CONTINUE
  333:             ELSE
  334:                SSQ( 1 ) = ZERO
  335:                SSQ( 2 ) = ONE
  336:                DO 300 J = 1, N
  337:                   COLSSQ( 1 ) = ZERO
  338:                   COLSSQ( 2 ) = ONE
  339:                   CALL DLASSQ( MIN( M, J ), A( 1, J ), 1,
  340:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  341:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  342:   300          CONTINUE
  343:             END IF
  344:          ELSE
  345:             IF( LSAME( DIAG, 'U' ) ) THEN
  346:                SSQ( 1 ) = ONE
  347:                SSQ( 2 ) = MIN( M, N )
  348:                DO 310 J = 1, N
  349:                   COLSSQ( 1 ) = ZERO
  350:                   COLSSQ( 2 ) = ONE
  351:                   CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1,
  352:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  353:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  354:   310          CONTINUE
  355:             ELSE
  356:                SSQ( 1 ) = ZERO
  357:                SSQ( 2 ) = ONE
  358:                DO 320 J = 1, N
  359:                   COLSSQ( 1 ) = ZERO
  360:                   COLSSQ( 2 ) = ONE
  361:                   CALL DLASSQ( M-J+1, A( J, J ), 1,
  362:      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
  363:                   CALL DCOMBSSQ( SSQ, COLSSQ )
  364:   320          CONTINUE
  365:             END IF
  366:          END IF
  367:          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  368:       END IF
  369: *
  370:       DLANTR = VALUE
  371:       RETURN
  372: *
  373: *     End of DLANTR
  374: *
  375:       END

CVSweb interface <joel.bertrand@systella.fr>