File:  [local] / rpl / lapack / lapack / dlantr.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:23 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b DLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLANTR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
   22: *                        WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            LDA, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLANTR  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> trapezoidal or triangular matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return DLANTR
   44: *> \verbatim
   45: *>
   46: *>    DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in DLANTR as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the matrix A is upper or lower trapezoidal.
   74: *>          = 'U':  Upper trapezoidal
   75: *>          = 'L':  Lower trapezoidal
   76: *>          Note that A is triangular instead of trapezoidal if M = N.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] DIAG
   80: *> \verbatim
   81: *>          DIAG is CHARACTER*1
   82: *>          Specifies whether or not the matrix A has unit diagonal.
   83: *>          = 'N':  Non-unit diagonal
   84: *>          = 'U':  Unit diagonal
   85: *> \endverbatim
   86: *>
   87: *> \param[in] M
   88: *> \verbatim
   89: *>          M is INTEGER
   90: *>          The number of rows of the matrix A.  M >= 0, and if
   91: *>          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] N
   95: *> \verbatim
   96: *>          N is INTEGER
   97: *>          The number of columns of the matrix A.  N >= 0, and if
   98: *>          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] A
  102: *> \verbatim
  103: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  104: *>          The trapezoidal matrix A (A is triangular if M = N).
  105: *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
  106: *>          the array A contains the upper trapezoidal matrix, and the
  107: *>          strictly lower triangular part of A is not referenced.
  108: *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
  109: *>          the array A contains the lower trapezoidal matrix, and the
  110: *>          strictly upper triangular part of A is not referenced.  Note
  111: *>          that when DIAG = 'U', the diagonal elements of A are not
  112: *>          referenced and are assumed to be one.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>          The leading dimension of the array A.  LDA >= max(M,1).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] WORK
  122: *> \verbatim
  123: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124: *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  125: *>          referenced.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee
  132: *> \author Univ. of California Berkeley
  133: *> \author Univ. of Colorado Denver
  134: *> \author NAG Ltd.
  135: *
  136: *> \date December 2016
  137: *
  138: *> \ingroup doubleOTHERauxiliary
  139: *
  140: *  =====================================================================
  141:       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  142:      $                 WORK )
  143: *
  144: *  -- LAPACK auxiliary routine (version 3.7.0) --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *     December 2016
  148: *
  149: *     .. Scalar Arguments ..
  150:       CHARACTER          DIAG, NORM, UPLO
  151:       INTEGER            LDA, M, N
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  155: *     ..
  156: *
  157: * =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       DOUBLE PRECISION   ONE, ZERO
  161:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       LOGICAL            UDIAG
  165:       INTEGER            I, J
  166:       DOUBLE PRECISION   SCALE, SUM, VALUE
  167: *     ..
  168: *     .. External Subroutines ..
  169:       EXTERNAL           DLASSQ
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL            LSAME, DISNAN
  173:       EXTERNAL           LSAME, DISNAN
  174: *     ..
  175: *     .. Intrinsic Functions ..
  176:       INTRINSIC          ABS, MIN, SQRT
  177: *     ..
  178: *     .. Executable Statements ..
  179: *
  180:       IF( MIN( M, N ).EQ.0 ) THEN
  181:          VALUE = ZERO
  182:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  183: *
  184: *        Find max(abs(A(i,j))).
  185: *
  186:          IF( LSAME( DIAG, 'U' ) ) THEN
  187:             VALUE = ONE
  188:             IF( LSAME( UPLO, 'U' ) ) THEN
  189:                DO 20 J = 1, N
  190:                   DO 10 I = 1, MIN( M, J-1 )
  191:                      SUM = ABS( A( I, J ) )
  192:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  193:    10             CONTINUE
  194:    20          CONTINUE
  195:             ELSE
  196:                DO 40 J = 1, N
  197:                   DO 30 I = J + 1, M
  198:                      SUM = ABS( A( I, J ) )
  199:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  200:    30             CONTINUE
  201:    40          CONTINUE
  202:             END IF
  203:          ELSE
  204:             VALUE = ZERO
  205:             IF( LSAME( UPLO, 'U' ) ) THEN
  206:                DO 60 J = 1, N
  207:                   DO 50 I = 1, MIN( M, J )
  208:                      SUM = ABS( A( I, J ) )
  209:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  210:    50             CONTINUE
  211:    60          CONTINUE
  212:             ELSE
  213:                DO 80 J = 1, N
  214:                   DO 70 I = J, M
  215:                      SUM = ABS( A( I, J ) )
  216:                      IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  217:    70             CONTINUE
  218:    80          CONTINUE
  219:             END IF
  220:          END IF
  221:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  222: *
  223: *        Find norm1(A).
  224: *
  225:          VALUE = ZERO
  226:          UDIAG = LSAME( DIAG, 'U' )
  227:          IF( LSAME( UPLO, 'U' ) ) THEN
  228:             DO 110 J = 1, N
  229:                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  230:                   SUM = ONE
  231:                   DO 90 I = 1, J - 1
  232:                      SUM = SUM + ABS( A( I, J ) )
  233:    90             CONTINUE
  234:                ELSE
  235:                   SUM = ZERO
  236:                   DO 100 I = 1, MIN( M, J )
  237:                      SUM = SUM + ABS( A( I, J ) )
  238:   100             CONTINUE
  239:                END IF
  240:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  241:   110       CONTINUE
  242:          ELSE
  243:             DO 140 J = 1, N
  244:                IF( UDIAG ) THEN
  245:                   SUM = ONE
  246:                   DO 120 I = J + 1, M
  247:                      SUM = SUM + ABS( A( I, J ) )
  248:   120             CONTINUE
  249:                ELSE
  250:                   SUM = ZERO
  251:                   DO 130 I = J, M
  252:                      SUM = SUM + ABS( A( I, J ) )
  253:   130             CONTINUE
  254:                END IF
  255:                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  256:   140       CONTINUE
  257:          END IF
  258:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  259: *
  260: *        Find normI(A).
  261: *
  262:          IF( LSAME( UPLO, 'U' ) ) THEN
  263:             IF( LSAME( DIAG, 'U' ) ) THEN
  264:                DO 150 I = 1, M
  265:                   WORK( I ) = ONE
  266:   150          CONTINUE
  267:                DO 170 J = 1, N
  268:                   DO 160 I = 1, MIN( M, J-1 )
  269:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  270:   160             CONTINUE
  271:   170          CONTINUE
  272:             ELSE
  273:                DO 180 I = 1, M
  274:                   WORK( I ) = ZERO
  275:   180          CONTINUE
  276:                DO 200 J = 1, N
  277:                   DO 190 I = 1, MIN( M, J )
  278:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  279:   190             CONTINUE
  280:   200          CONTINUE
  281:             END IF
  282:          ELSE
  283:             IF( LSAME( DIAG, 'U' ) ) THEN
  284:                DO 210 I = 1, N
  285:                   WORK( I ) = ONE
  286:   210          CONTINUE
  287:                DO 220 I = N + 1, M
  288:                   WORK( I ) = ZERO
  289:   220          CONTINUE
  290:                DO 240 J = 1, N
  291:                   DO 230 I = J + 1, M
  292:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  293:   230             CONTINUE
  294:   240          CONTINUE
  295:             ELSE
  296:                DO 250 I = 1, M
  297:                   WORK( I ) = ZERO
  298:   250          CONTINUE
  299:                DO 270 J = 1, N
  300:                   DO 260 I = J, M
  301:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  302:   260             CONTINUE
  303:   270          CONTINUE
  304:             END IF
  305:          END IF
  306:          VALUE = ZERO
  307:          DO 280 I = 1, M
  308:             SUM = WORK( I )
  309:             IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  310:   280    CONTINUE
  311:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  312: *
  313: *        Find normF(A).
  314: *
  315:          IF( LSAME( UPLO, 'U' ) ) THEN
  316:             IF( LSAME( DIAG, 'U' ) ) THEN
  317:                SCALE = ONE
  318:                SUM = MIN( M, N )
  319:                DO 290 J = 2, N
  320:                   CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  321:   290          CONTINUE
  322:             ELSE
  323:                SCALE = ZERO
  324:                SUM = ONE
  325:                DO 300 J = 1, N
  326:                   CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  327:   300          CONTINUE
  328:             END IF
  329:          ELSE
  330:             IF( LSAME( DIAG, 'U' ) ) THEN
  331:                SCALE = ONE
  332:                SUM = MIN( M, N )
  333:                DO 310 J = 1, N
  334:                   CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  335:      $                         SUM )
  336:   310          CONTINUE
  337:             ELSE
  338:                SCALE = ZERO
  339:                SUM = ONE
  340:                DO 320 J = 1, N
  341:                   CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  342:   320          CONTINUE
  343:             END IF
  344:          END IF
  345:          VALUE = SCALE*SQRT( SUM )
  346:       END IF
  347: *
  348:       DLANTR = VALUE
  349:       RETURN
  350: *
  351: *     End of DLANTR
  352: *
  353:       END

CVSweb interface <joel.bertrand@systella.fr>