File:  [local] / rpl / lapack / lapack / dlantr.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:18 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DLANTR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLANTR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
   22: *                        WORK )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORM, UPLO
   26: *       INTEGER            LDA, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLANTR  returns the value of the one norm,  or the Frobenius norm, or
   39: *> the  infinity norm,  or the  element of  largest absolute value  of a
   40: *> trapezoidal or triangular matrix A.
   41: *> \endverbatim
   42: *>
   43: *> \return DLANTR
   44: *> \verbatim
   45: *>
   46: *>    DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
   47: *>             (
   48: *>             ( norm1(A),         NORM = '1', 'O' or 'o'
   49: *>             (
   50: *>             ( normI(A),         NORM = 'I' or 'i'
   51: *>             (
   52: *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
   53: *>
   54: *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
   55: *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
   56: *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
   57: *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] NORM
   64: *> \verbatim
   65: *>          NORM is CHARACTER*1
   66: *>          Specifies the value to be returned in DLANTR as described
   67: *>          above.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          Specifies whether the matrix A is upper or lower trapezoidal.
   74: *>          = 'U':  Upper trapezoidal
   75: *>          = 'L':  Lower trapezoidal
   76: *>          Note that A is triangular instead of trapezoidal if M = N.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] DIAG
   80: *> \verbatim
   81: *>          DIAG is CHARACTER*1
   82: *>          Specifies whether or not the matrix A has unit diagonal.
   83: *>          = 'N':  Non-unit diagonal
   84: *>          = 'U':  Unit diagonal
   85: *> \endverbatim
   86: *>
   87: *> \param[in] M
   88: *> \verbatim
   89: *>          M is INTEGER
   90: *>          The number of rows of the matrix A.  M >= 0, and if
   91: *>          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] N
   95: *> \verbatim
   96: *>          N is INTEGER
   97: *>          The number of columns of the matrix A.  N >= 0, and if
   98: *>          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] A
  102: *> \verbatim
  103: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  104: *>          The trapezoidal matrix A (A is triangular if M = N).
  105: *>          If UPLO = 'U', the leading m by n upper trapezoidal part of
  106: *>          the array A contains the upper trapezoidal matrix, and the
  107: *>          strictly lower triangular part of A is not referenced.
  108: *>          If UPLO = 'L', the leading m by n lower trapezoidal part of
  109: *>          the array A contains the lower trapezoidal matrix, and the
  110: *>          strictly upper triangular part of A is not referenced.  Note
  111: *>          that when DIAG = 'U', the diagonal elements of A are not
  112: *>          referenced and are assumed to be one.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>          The leading dimension of the array A.  LDA >= max(M,1).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] WORK
  122: *> \verbatim
  123: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124: *>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  125: *>          referenced.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee 
  132: *> \author Univ. of California Berkeley 
  133: *> \author Univ. of Colorado Denver 
  134: *> \author NAG Ltd. 
  135: *
  136: *> \date November 2011
  137: *
  138: *> \ingroup doubleOTHERauxiliary
  139: *
  140: *  =====================================================================
  141:       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  142:      $                 WORK )
  143: *
  144: *  -- LAPACK auxiliary routine (version 3.4.0) --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *     November 2011
  148: *
  149: *     .. Scalar Arguments ..
  150:       CHARACTER          DIAG, NORM, UPLO
  151:       INTEGER            LDA, M, N
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
  155: *     ..
  156: *
  157: * =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       DOUBLE PRECISION   ONE, ZERO
  161:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       LOGICAL            UDIAG
  165:       INTEGER            I, J
  166:       DOUBLE PRECISION   SCALE, SUM, VALUE
  167: *     ..
  168: *     .. External Subroutines ..
  169:       EXTERNAL           DLASSQ
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL            LSAME
  173:       EXTERNAL           LSAME
  174: *     ..
  175: *     .. Intrinsic Functions ..
  176:       INTRINSIC          ABS, MAX, MIN, SQRT
  177: *     ..
  178: *     .. Executable Statements ..
  179: *
  180:       IF( MIN( M, N ).EQ.0 ) THEN
  181:          VALUE = ZERO
  182:       ELSE IF( LSAME( NORM, 'M' ) ) THEN
  183: *
  184: *        Find max(abs(A(i,j))).
  185: *
  186:          IF( LSAME( DIAG, 'U' ) ) THEN
  187:             VALUE = ONE
  188:             IF( LSAME( UPLO, 'U' ) ) THEN
  189:                DO 20 J = 1, N
  190:                   DO 10 I = 1, MIN( M, J-1 )
  191:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  192:    10             CONTINUE
  193:    20          CONTINUE
  194:             ELSE
  195:                DO 40 J = 1, N
  196:                   DO 30 I = J + 1, M
  197:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  198:    30             CONTINUE
  199:    40          CONTINUE
  200:             END IF
  201:          ELSE
  202:             VALUE = ZERO
  203:             IF( LSAME( UPLO, 'U' ) ) THEN
  204:                DO 60 J = 1, N
  205:                   DO 50 I = 1, MIN( M, J )
  206:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  207:    50             CONTINUE
  208:    60          CONTINUE
  209:             ELSE
  210:                DO 80 J = 1, N
  211:                   DO 70 I = J, M
  212:                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
  213:    70             CONTINUE
  214:    80          CONTINUE
  215:             END IF
  216:          END IF
  217:       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  218: *
  219: *        Find norm1(A).
  220: *
  221:          VALUE = ZERO
  222:          UDIAG = LSAME( DIAG, 'U' )
  223:          IF( LSAME( UPLO, 'U' ) ) THEN
  224:             DO 110 J = 1, N
  225:                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  226:                   SUM = ONE
  227:                   DO 90 I = 1, J - 1
  228:                      SUM = SUM + ABS( A( I, J ) )
  229:    90             CONTINUE
  230:                ELSE
  231:                   SUM = ZERO
  232:                   DO 100 I = 1, MIN( M, J )
  233:                      SUM = SUM + ABS( A( I, J ) )
  234:   100             CONTINUE
  235:                END IF
  236:                VALUE = MAX( VALUE, SUM )
  237:   110       CONTINUE
  238:          ELSE
  239:             DO 140 J = 1, N
  240:                IF( UDIAG ) THEN
  241:                   SUM = ONE
  242:                   DO 120 I = J + 1, M
  243:                      SUM = SUM + ABS( A( I, J ) )
  244:   120             CONTINUE
  245:                ELSE
  246:                   SUM = ZERO
  247:                   DO 130 I = J, M
  248:                      SUM = SUM + ABS( A( I, J ) )
  249:   130             CONTINUE
  250:                END IF
  251:                VALUE = MAX( VALUE, SUM )
  252:   140       CONTINUE
  253:          END IF
  254:       ELSE IF( LSAME( NORM, 'I' ) ) THEN
  255: *
  256: *        Find normI(A).
  257: *
  258:          IF( LSAME( UPLO, 'U' ) ) THEN
  259:             IF( LSAME( DIAG, 'U' ) ) THEN
  260:                DO 150 I = 1, M
  261:                   WORK( I ) = ONE
  262:   150          CONTINUE
  263:                DO 170 J = 1, N
  264:                   DO 160 I = 1, MIN( M, J-1 )
  265:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  266:   160             CONTINUE
  267:   170          CONTINUE
  268:             ELSE
  269:                DO 180 I = 1, M
  270:                   WORK( I ) = ZERO
  271:   180          CONTINUE
  272:                DO 200 J = 1, N
  273:                   DO 190 I = 1, MIN( M, J )
  274:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  275:   190             CONTINUE
  276:   200          CONTINUE
  277:             END IF
  278:          ELSE
  279:             IF( LSAME( DIAG, 'U' ) ) THEN
  280:                DO 210 I = 1, N
  281:                   WORK( I ) = ONE
  282:   210          CONTINUE
  283:                DO 220 I = N + 1, M
  284:                   WORK( I ) = ZERO
  285:   220          CONTINUE
  286:                DO 240 J = 1, N
  287:                   DO 230 I = J + 1, M
  288:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  289:   230             CONTINUE
  290:   240          CONTINUE
  291:             ELSE
  292:                DO 250 I = 1, M
  293:                   WORK( I ) = ZERO
  294:   250          CONTINUE
  295:                DO 270 J = 1, N
  296:                   DO 260 I = J, M
  297:                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  298:   260             CONTINUE
  299:   270          CONTINUE
  300:             END IF
  301:          END IF
  302:          VALUE = ZERO
  303:          DO 280 I = 1, M
  304:             VALUE = MAX( VALUE, WORK( I ) )
  305:   280    CONTINUE
  306:       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  307: *
  308: *        Find normF(A).
  309: *
  310:          IF( LSAME( UPLO, 'U' ) ) THEN
  311:             IF( LSAME( DIAG, 'U' ) ) THEN
  312:                SCALE = ONE
  313:                SUM = MIN( M, N )
  314:                DO 290 J = 2, N
  315:                   CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  316:   290          CONTINUE
  317:             ELSE
  318:                SCALE = ZERO
  319:                SUM = ONE
  320:                DO 300 J = 1, N
  321:                   CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  322:   300          CONTINUE
  323:             END IF
  324:          ELSE
  325:             IF( LSAME( DIAG, 'U' ) ) THEN
  326:                SCALE = ONE
  327:                SUM = MIN( M, N )
  328:                DO 310 J = 1, N
  329:                   CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  330:      $                         SUM )
  331:   310          CONTINUE
  332:             ELSE
  333:                SCALE = ZERO
  334:                SUM = ONE
  335:                DO 320 J = 1, N
  336:                   CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  337:   320          CONTINUE
  338:             END IF
  339:          END IF
  340:          VALUE = SCALE*SQRT( SUM )
  341:       END IF
  342: *
  343:       DLANTR = VALUE
  344:       RETURN
  345: *
  346: *     End of DLANTR
  347: *
  348:       END

CVSweb interface <joel.bertrand@systella.fr>